Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 11: 703, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582244

RESUMEN

Salicylic acid (SA) and reactive oxygen species (ROS) are known to be key modulators of plant defense. However, mechanisms of molecular signal perception and appropriate physiological responses to SA and ROS during biotic or abiotic stress are poorly understood. Here we report characterization of SMALL DEFENSE-ASSOCIATED PROTEIN 1 (SDA1), which modulates defense against bacterial pathogens and tolerance to oxidative stress. sda1 mutants are compromised in defense gene expression, SA accumulation, and defense against bacterial pathogens. External application of SA rescues compromised defense in sda1 mutants. sda1 mutants are also compromised in tolerance to ROS-generating chemicals. Overexpression of SDA1 leads to enhanced resistance against bacterial pathogens and tolerance to oxidative stress. These results suggest that SDA1 regulates plant immunity via the SA-mediated defense pathway and tolerance to oxidative stress. SDA1 encodes a novel small plant-specific protein containing a highly conserved seven amino acid (S/G)WA(D/E)QWD domain at the N-terminus that is critical for SDA1 function in pathogen defense and tolerance to oxidative stress. Taken together, our studies suggest that SDA1 plays a critical role in modulating both biotic and abiotic stresses in Arabidopsis (Arabidopsis thaliana) and appears to be a plant-specific stress responsive protein.

2.
Proc Natl Acad Sci U S A ; 117(9): 5049-5058, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32051250

RESUMEN

The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/embriología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Hojas de la Planta/crecimiento & desarrollo , Transporte de Proteínas , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo
4.
Nat Biomed Eng ; 3(11): 917-929, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686001

RESUMEN

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with cytotoxic payloads. However, the present strategies for the synthesis of ADCs either yield unstable or heterogeneous products or involve complex processes. Here, we report a computational approach that leverages molecular docking and molecular dynamics simulations to design ADCs that self-assemble through the non-covalent binding of the antibody to a payload that we designed to act as an affinity ligand for specific conserved amino acid residues in the antibody. This method does not require modifications to the antibody structure and yields homogenous ADCs that form in less than 8 min. We show that two conjugates, which consist of hydrophilic and hydrophobic payloads conjugated to two different antibodies, retain the structure and binding properties of the antibody and its biological specificity, are stable in plasma and improve anti-tumour efficacy in mice with non-small cell lung tumour xenografts. The relative simplicity of the approach may facilitate the production of ADCs for the targeted delivery of cytotoxic payloads.


Asunto(s)
Anticuerpos/química , Citotoxinas/química , Diseño de Fármacos , Inmunoconjugados/química , Inmunoconjugados/farmacología , Animales , Especificidad de Anticuerpos , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Fenómenos Químicos , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Ratones , Ratones Desnudos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Neoplasias/tratamiento farmacológico , Ingeniería de Proteínas , Especificidad por Sustrato , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
5.
PLoS One ; 10(12): e0144852, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26659655

RESUMEN

The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN Polimerasa Sigma 54/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Secuencia de Aminoácidos , Ácidos Dicarboxílicos/metabolismo , Etanol/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Solanum lycopersicum/microbiología , Datos de Secuencia Molecular , Nitratos/metabolismo , Ornitina/metabolismo , Enfermedades de las Plantas/microbiología , Plásmidos/química , Plásmidos/metabolismo , Prolina/metabolismo , ARN Polimerasa Sigma 54/metabolismo , Ralstonia solanacearum/metabolismo , Virulencia , Xantina/metabolismo
6.
Bioorg Med Chem Lett ; 21(7): 2098-101, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21353545

RESUMEN

Cdk5/p25 has emerged as a principle therapeutic target for numerous acute and chronic neurodegenerative diseases, including Alzheimer's disease. A structure-activity relationship study of 2,4-diaminothiazole inhibitors revealed that increased Cdk5/p25 inhibitory activity could be accomplished by incorporating pyridines on the 2-amino group and addition of substituents to the 2- or 3-position of the phenyl ketone moiety. Interpretation of the SAR results for many of the analogs was aided through in silico docking with Cdk5/p25 and calculating protein hydrations sites using WaterMap. Finally, improved in vitro mouse microsomal stability was also achieved.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/química , Tiazoles/farmacología , Animales , Ratones , Modelos Moleculares , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA