Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e16991, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37905464

RESUMEN

Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a "middle of the road" scenario (SSP2-4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26-43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present-day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from -20 to -191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.


Asunto(s)
Tortugas , Animales , Tortugas/fisiología , Temperatura , Cambio Climático , Reproducción , Razón de Masculinidad
2.
Sci Total Environ ; 755(Pt 1): 142677, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33077211

RESUMEN

The outwelling paradigm argues that mangrove and saltmarsh wetlands export much excess production to downstream marine systems. However, outwelling is difficult to quantify and currently 40-50% of fixed carbon is unaccounted for. Some carbon is thought outwelled through mobile fauna, including fish, which visit and feed on mangrove produce during tidal inundation or early life stages before moving offshore, yet this pathway for carbon outwelling has never been quantified. We studied faunal carbon outwelling in three arid mangroves, where sharp isotopic gradients across the boundary between mangroves and down-stream systems permitted spatial differentiation of source of carbon in animal tissue. Stable isotope analysis (C, N, S) revealed 22-56% of the tissue of tidally migrating fauna was mangrove derived. Estimated consumption rates showed that 1.4% (38 kg C ha-1 yr-1) of annual mangrove litter production was directly consumed by migratory fauna, with <1% potentially exported. We predict that the amount of faunally-outwelled carbon is likely to be highly correlated with biomass of migratory fauna. While this may vary globally, the measured migratory fauna biomass in these arid mangroves was within the range of observations for mangroves across diverse biogeographic ranges and environmental settings. Hence, this study provides a generalized prediction of the relatively weak contribution of faunal migration to carbon outwelling from mangroves and the current proposition, that the unaccounted-for 40-50% of mangrove C is exported as dissolved inorganic carbon, remains plausible.


Asunto(s)
Carbono , Humedales , Animales , Biomasa , Secuestro de Carbono
3.
Mar Pollut Bull ; 113(1-2): 147-155, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27614563

RESUMEN

The study aimed to confirm the presence of historic oyster banks of Qatar and code the biotopes present. The research also collated historical records and scientific publications to create a timeline of fishery activity. The oyster banks where once an extremely productive economic resource however, intense overfishing, extreme environmental conditions and anthropogenic impacts caused a fishery collapse. The timeline highlighted the vulnerability of ecosystem engineering bivalves if overexploited. The current status of the oyster banks meant only one site could be described as oyster dominant. This was unexpected as the sites were located in areas which once supported a highly productive oyster fishery. The research revealed the devastating effect that anthropogenic impacts can have on a relatively robust marine habitat like an oyster bed and it is hoped these findings will act as a driver to investigate and map other vulnerable habitats within the region before they too become compromised.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Explotaciones Pesqueras , Pinctada/crecimiento & desarrollo , Contaminación del Agua , Animales , Océano Índico , Qatar , Encuestas y Cuestionarios , Contaminación del Agua/efectos adversos , Contaminación del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...