Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 38(18): 5590-5602, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35486815

RESUMEN

The present article highlights an approach to generating contrasting patterns from drying colloidal droplets in a liquid bridge configuration, different from well-known coffee rings. Reduction of the confinement distance (the gap between the solid surfaces) leads to systematized nanoparticle agglomeration yielding spoke-like patterns similar to those found on scallop shells instead of circumferential edge deposition. Alteration of the confinement distance modulates the curvature that entails variations in the evaporation flux across the liquid-vapor interface. Consequently, flow inside different liquid bridges (LBs) varies significantly for different confinement distance. Small confinement distance results in the stick-slip motion of squeezed liquid bridges. On the contrary, the stretched LBs exhibit pinned contact lines. The confinement distance determines the characteristic length scales of the thin film formed near the contact line, and its theoretical estimations are validated against the experimental observations using reflection interferometry, further exhibiting good agreement (in order of magnitude). We decipher a proposition that a drying liquid thin film (height ∼ O(10-7)m) present during dewetting near the three-phase contact line is responsible for the aligned deposition of particles. The coupled interplay of contact line dynamics, evaporation induced advection, and dewetting of the thin film at a three-phase interface contributes to the differences in deposition patterns.

2.
Commun Biol ; 4(1): 1173, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625643

RESUMEN

Naturally drying bacterial droplets on inanimate surfaces representing fomites are the most consequential mode for transmitting infection through oro-fecal route. We provide a multiscale holistic approach to understand flow dynamics induced bacterial pattern formation on fomites leading to pathogenesis. The most virulent gut pathogen, Salmonella Typhimurium (STM), typically found in contaminated food and water, is used as model system in the current study. Evaporation-induced flow in sessile droplets facilitates the transport of STM, forming spatio-temporally varying bacterial deposition patterns based on droplet medium's nutrient scale. Mechanical and low moisture stress in the drying process reduced bacterial viability but interestingly induced hyper-proliferation of STM in macrophages, thereby augmenting virulence in fomites. In vivo studies of fomites in mice confirm that STM maintains enhanced virulence. This work demonstrates that stressed bacterial deposit morphologies formed over small timescale (minutes) on organic and inorganic surfaces, plays a significant role in enhancing fomite's pathogenesis over hours and days.


Asunto(s)
Desecación , Fómites/microbiología , Viabilidad Microbiana , Análisis Espacio-Temporal
3.
Phys Rev E ; 103(1-1): 013101, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33601501

RESUMEN

We experimentally investigate the dissolution of microscale sessile alcohol droplets in water under the influence of impermeable vertical confinement. The introduction of confinement suppresses the mass transport from the droplet to bulk medium in comparison with the nonconfined counterpart. Along with a buoyant plume, flow visualization reveals that the dissolution of a confined droplet is hindered by a mechanism called levitated toroidal vortex. The morphological changes in the flow due to the vortex-induced impediment alters the dissolution rate, resulting in enhancement of droplet lifetime. Further, we have proposed a modification in the key nondimensional parameters [Rayleigh number Ra^{'} (signifying buoyancy) and Sherwood number Sh^{'} (signifying mass flux)] and droplet lifetime τ_{c}^{'}, based on the hypothesis of linearly stratified droplet surroundings (with revised concentration difference ΔC^{'}), taking into account the geometry of the confinements. We show that experimental results on droplet dissolution under vertical confinement corroborate scaling relations Sh^{'}∼Ra^{'}^{1/4} and τ_{c}^{'}∼ΔC^{'}^{-5/4}. We also draw attention to the fact that the revised scaling law incorporating the geometry of confinements proposed in the present work can be extended to other known configurations such as droplet dissolution inside a range of channel dimensions, as encountered in a gamut of applications such as microfluidic technology and biomedical engineering.

4.
J Colloid Interface Sci ; 519: 242-254, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29501996

RESUMEN

The present article discusses the typical influence of grafted conducting polymers in the mesoscale pores of dielectric particles on the static and dynamic electrorheology and electro-viscoelastic behavior of corresponding colloids. Nanocrystalline meso-nanoporous zeolite has been prepared by chemical synthesis and subsequently polyaniline (PANI) coating has been implemented. Electrorheological (ER) suspensions have been formed by dispersing the nanoparticles in silicone oil and their viscoelastic behaviors are examined to understand the nature of such complex colloidal systems under electric fields. PANI-Zeolite ER fluids demonstrate higher static electroviscous effects and yield stress potential than untreated Zeolite, typically studied in literature. Transient electro-viscous characterizations show a stable and negligible hysteresis behavior when both the fluids are exposed to constant as well as time varying electric field intensities. Further oscillatory shear experiments of frequency and strain sweeps exhibit predominant elastic behavior in case of Zeolite based ER suspensions as compared to PANI systems. Detailed investigations reveal Zeolite based ER suspensions display enhanced relative yielding as well as electro-viscoelastic stability than the PANI-Zeolite. The steady state viscous behaviors are scaled against the non-dimensional Mason number to model the system behavior for both fluids. Experimental data of flow behaviors of both the ER fluids are compared with semi-classical models and it is found that the CCJ model possesses a closer proximity than traditional Bingham model, thereby revealing the fluids to be generic pseudo-linear fluids. The present article reveals that while the PANI based fluids are typically hailed superior in literature, it is only restricted to steady shear utilities. In case of dynamic and oscillatory systems, the traditional Zeolite based fluids exhibit superior ER caliber.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA