Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(5): 2373-2385, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38214577

RESUMEN

The inhibitory action of Schiff base complexes of 3d metals against the urease enzyme is well explored in the scientific community. However, the ability of such complexes in mimicking active metallobiosites of urease enzymes, possessing ureolytic behavior, still remains unexplored. With this aim firstly, two Zn(II)-complexes (PPR-HMB-Zn and PZ-HMB-Zn) have been developed from two different Schiff base ligands (HL1 = 2-((E)-(2-(piperidin-1-yl)ethylimino)methyl)-5-methylphenol and HL2 = 2-((E)-(2-(piperizin-1-yl)ethylimino)methyl)-5-methylphenol) and structurally characterized using single crystal XRD. The hydrolytic enzymatic activity of both complexes was demonstrated by the gradual increase in the absorption maxima at 425 nm for the formation of the p-nitrophenolate ion from catalytic hydrolysis mediated by the Zn(II) complexes with a disodium salt of p-nitrophenyl phosphate as a model substrate. Associated kinetic parameters, pH dependency and a relevant hydrolysis mechanism have also been explored. After confirming the hydrolytic ability, the complexes were exploited to mimic the hydrolytic activity of Jack bean urease that catalytically hydrolyses urea into ammonia and CO2. The change in the pH of the solution owing to the formation of ammonia under the complex catalysed hydrolytic action of urea has been monitored spectrophotometrically using the pH dependent structural change of phenol red. The amount of ammonia has been quantified using the Nessler's reagent spectrophotometric method. The ureolytic reaction mechanism has been investigated using density functional theory (DFT) calculations using the B3LYP and TPSSH methods for the systematic calculation of the interaction energy. In contrast to PZ-HMB-Zn, PPR-HMB-Zn functions more effectively as a catalyst due to the existence of a lattice-occluded water molecule in its crystal structure and the protonation of the non-terminal N to attract urea by H-bonding, which was further confirmed by AIM analysis.


Asunto(s)
Cresoles , Metaloproteínas , Ureasa , Bases de Schiff/química , Amoníaco , Urea , Zinc/química
2.
ACS Appl Mater Interfaces ; 12(34): 38530-38545, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32805955

RESUMEN

In this work, a green, sustainable, and efficient protocol for the syntheses of dihydroquinazoline derivatives is proposed. Initially, three Schiff base complexes of iron containing the ligand (2,2-dimethylpropane-1,3-diyl)bis(azanylylidene)bis(methanylylidene)bis(2,4-Xphenol), where X = Cl (complex 1)/Br (complex 2)/I (complex 3), were synthesized, fully characterized, and used in the desired syntheses. Complex 1 excelled as a catalyst, closely followed by complexes 2 and 3. DFT calculations helped in rationalizing the role of the halide substituent in the ligand backbone as a relevant factor in the catalytic superiority of complex 1 over complexes 2 and 3 for the synthesis of the dihydroquinazoline derivatives. Finally, to facilitate catalyst recoverability and reusability, complex 1 was immobilized on GO@Fe3O4@APTES (GO, graphene oxide; APTES, 3-aminopropyltriethoxysilane) to generate GO@Fe3O4@APTES@FeL1 (GOTESFe). GOTESFe was thoroughly characterized through scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy and efficiently used for the synthesis of dihydroquinazoline derivatives. GOTESFe could be magnetically recovered and reused up to five cycles without compromising its catalytic efficiency. Therefore, immobilization of the chosen iron complex onto magnetic GO sheets offers an extremely competent route in providing a blueprint of a readily recoverable, reusable, robust, and potent catalyst for the synthesis of dihydroquinazoline-based compounds.

3.
ACS Omega ; 4(7): 11558-11565, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460262

RESUMEN

Cetrimonium bromide (CTAB)-coated water disperse magnetically separable nanocatalysts CTAB/Fe3O4@dopa@ML (M = Fe or Mn, L = cyclohexane-1,2-diylbis(azanylylidene)bis(methanylylidene)bis(2,4-diXphenol; X = Cl, Br, and I) have been synthesized using a simple synthetic strategy. This approach provides a new fruitful strategy to reduce the leaching of the active metal complex from the catalyst surface to the aqueous media. The synthesized catalysts have been found to be excellent for oxidation of alcohols in aqueous medium at room temperature. A probable catalytic pathway involving the generation of hydroperoxo intermediates has been assumed, and these intermediates have been characterized using density functional theory and several spectroscopic techniques. It is worthy of mention that the synthesized CTAB-coated magnetically separable nanocatalysts can be magnetically recovered from the aqueous reaction mixture after more than five cycles, which renders this approach as a sustainable and accessible one.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 194: 222-229, 2018 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-29413354

RESUMEN

Three Schiff base ligands such as 2­[(2­Hydroxy­3­methoxy­benzylidene)­amino]­2­hydroxymethyl­propane­1,3­diol (HL1), 2­[(2­Hydroxy­benzylidene)­amino]­2­hydroxymethyl­propane­1,3­diol (HL2), 2­[(3,5­Dichloro­2­hydroxy­benzylidene)­amino]­2­hydroxymethyl­propane­1,3­diol (HL3) have been synthesized by condensation of aldehydes (such as 3,5­Dichloro­2­hydroxy benzaldehyde, 2­Hydroxy­benzaldehyde, and 2­Hydroxy­3­methoxy­benzaldehyde) with Tris­(hydroxymethyl)amino methane and characterized by IR, UV-vis and 1H NMR spectroscopy. Then all these three ligands have been used to prepare Pb(II) complexes by reaction with lead(II) acetate tri-hydrate in methanol. In view of analytical and spectral (IR, UV-vis and Mass) studies, it has been concluded that, except HL2, other two ligands form 1:1 metal complexes (1 and 3) with lead. Between two complexes, complex 3 is highly fluorescent and this property has been used to identify the pollutant nitroaromatics. Finally, the quenching mechanism has been established by means of spectroscopic investigation.

5.
Inorg Chem ; 54(5): 2315-24, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25695837

RESUMEN

An "end-off" compartmental ligand has been synthesized by an abnormal Mannich reaction, namely, 2-[bis(2-methoxyethyl)aminomethyl]-4-isopropylphenol yielding three centrosymmetric binuclear µ-phenoxozinc(II) complexes having the molecular formula [Zn2(L)2X2] (Zn-1, Zn-2, and Zn-3), where X = Cl(-), Br (-), and I (-), respectively. X-ray crystallographic analysis shows that the ZnO3NX chromophores in each molecule form a slightly distorted trigonal-bipyramidal geometry (τ = 0.55-0.68) with an intermetallic distance of 3.068, 3.101, and 3.083 Å (1-3, respectively). The spectrophotometrical investigation on their phosphatase activity established that all three of them possess significant hydrolytic efficiency. Michaelis-Menten-derived kinetic parameters indicate that the competitiveness of the rate of P-O bond fission employing the phosphomonoester (4-nitrophenyl)phosphate in 97.5% N,N-dimethylformamide is 3 > 1 > 2 and the kcat value lies in the range 9.47-11.62 s(-1) at 298 K. Theoretical calculations involving three major active catalyst forms, such as the dimer-cis form (D-Cis), the dimer-trans form (D-Trans), and the monoform (M-1 and M-2), systematically interpret the reaction mechanism wherein the dimer-cis form with the binuclear-bridged hydroxide ion acting as the nucleophile and one water molecule playing a role in stabilizing the leaving group competes as the most favored pathway.


Asunto(s)
Compuestos Organometálicos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Teoría Cuántica , Zinc/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Monoéster Fosfórico Hidrolasas/química , Zinc/química
6.
Inorg Chem ; 52(23): 13442-52, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24246066

RESUMEN

Three new mononuclear nickel(II) complexes, namely, [NiL(1)(H2O)3]I2·H2O (1), [NiL(1)(H2O)3]Br2·H2O (2), and [NiL(1)(H2O)3]Cl2·2H2O (3) [HL(1) = 2-[(2-piperazin-1-ylethylimino)methyl]phenol], have been synthesized and structurally characterized. Structural characterization reveals that they possess similar structure: [NiL(1)(H2O)3](2+) complex cations, two halide counteranions, and lattice water molecules. One of the nitrogen atoms of the piperazine moiety is protonated to provide electrical neutrality to the system, a consequence observed in earlier studies (Inorg. Chem. 2010, 49, 3121; Polyhedron 2013, 52, 669). Catecholase-like activity has been investigated in methanol by a UV-vis spectrophotometric study using 3,5-di-tert-butylcatechol (3,5-DTBC) as the model substrate. Complexes 1 and 2 are highly active, but surprisingly 3 is totally inactive. The coordination chemistries of 1 and 2 remain unchanged in solution, whereas 3 behaves as a 1:1 electrolyte, as is evident from the conductivity study. Because of coordination of the chloride ligand to the metal in solution, it is proposed that 3,5-DTBC is not able to effectively approach an electrically neutral metal, and consequently complex 3 in solution does not show catecholase-like activity. Density functional theory (DFT) calculations corroborate well with the experimental observations and thus, in turn, support the proposed hypothesis of inactivity of 3. The cyclic voltametric study as well as DFT calculations suggests the possibility of a ligand-centered reduction at -1.1 V vs Ag/AgCl electrode. An electron paramagnetic resonance (EPR) experiment unambiguously hints at the generation of a radical from EPR-inactive 1 and 2 in the presence of 3,5-DTBC. Generation of H2O2 during catalysis has also been confirmed. DFT calculations support the ligand-centered radical generation, and thus a radical mechanism has been proposed for the catecholase-like activity exhibited by 1 and 2. Upon heating, 2 and 3 lose water molecules in two steps (first lattice waters, followed by coordinating water molecules), whereas 3 loses four water molecules in a single step, as revealed from thermogravimetric analysis. The totally dehydrated species are red, in all cases having square-planar geometry, and have amorphous nature, as is evident from a variable-temperature powder X-ray diffraction study.


Asunto(s)
Catecol Oxidasa/química , Complejos de Coordinación/química , Níquel/química , Fenoles/química , Catecoles/química , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Espectroscopía Infrarroja por Transformada de Fourier
7.
Inorg Chem ; 51(16): 8750-9, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22867434

RESUMEN

Four dinuclear and three mononuclear Zn(II) complexes of phenol-based compartmental ligands (HL(1)-HL(7)) have been synthesized with the aim to investigate the viability of a radical pathway in catecholase activity. The complexes have been characterized by routine physicochemical studies as well as X-ray single-crystal structure analysis: [Zn(2)(H(2)L(1))(OH)(H(2)O)(NO(3))](NO(3))(3) (1), [Zn(2)L(2)Cl(3)] (2), [Zn(2)L(3)Cl(3)] (3), [Zn(2)(L(4))(2)(CH(3)COO)(2)] (4), [Zn(HL(5))Cl(2)] (5), [Zn(HL(6))Cl(2)] (6), and [Zn(HL(7))Cl(2)] (7) [L(1)-L(3) and L(5)-L(7) = 2,6-bis(R-iminomethyl)-4-methylphenolato, where R= N-ethylpiperazine for L(1), R = 2-(N-ethyl)pyridine for L(2), R = N-ethylpyrrolidine for L(3), R = N-methylbenzene for L(5), R = 2-(N-methyl)thiophene for L(6), R = 2-(N-ethyl)thiophene for L(7), and L(4) = 2-formyl-4-methyl-6-N-methylbenzene-iminomethyl-phenolato]. Catecholase-like activity of the complexes has been investigated in methanol medium by UV-vis spectrophotometric study using 3,5-di-tert-butylcatechol as model substrate. All complexes are highly active in catalyzing the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ). Conversion of 3,5-DTBC to 3,5-DTBQ catalyzed by mononuclear complexes (5-7) is observed to proceed via formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically, a finding reported for the first time in any Zn(II) complex catalyzed oxidation of catechol. On the other hand, no such enzyme-substrate adduct has been identified, and 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by the dinuclear complexes (1-4) very smoothly. EPR experiment suggests generation of radicals in the presence of 3,5-DTBC, and that finding has been strengthened by cyclic voltammetric study. Thus, it may be proposed that the radical pathway is probably responsible for conversion of 3,5-DTBC to 3,5-DTBQ promoted by complexes of redox-innocent Zn(II) ion. The ligand-centered radical generation has further been verified by density functional theory calculation.


Asunto(s)
Catecoles/química , Complejos de Coordinación/síntesis química , Radicales Libres/química , Zinc/química , Derivados del Benceno/química , Benzoquinonas/química , Materiales Biomiméticos/química , Catálisis , Catecol Oxidasa/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Cinética , Ligandos , Estructura Molecular , Oxidación-Reducción , Piperazinas/química , Piridinas/química , Teoría Cuántica , Espectrofotometría , Tiofenos/química
8.
Inorg Chem ; 49(7): 3121-9, 2010 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-20192227

RESUMEN

A new dinuclear nickel(II) complex, [Ni(2)(LH(2))(H(2)O)(2)(OH)(NO(3))](NO(3))(3) (1), of an "end-off" compartmental ligand 2,6-bis(N-ethylpiperazine-iminomethyl)-4-methyl-phenolato, has been synthesized and structurally characterized. The X-ray single crystal structure analysis shows that the piperazine moieties assume the expected chair conformation and are protonated. The complex 1 exhibits versatile catalytic activities of biological significance, viz. catecholase, phosphatase, and DNA cleavage activities, etc. The catecholase activity of the complex observed is very dependent on the nature of the solvent. In acetonitrile medium, the complex is inactive to exhibit catecholase activity. On the other hand, in methanol, it catalyzes not only the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) but also tetrachlorocatechol (TCC), a catechol which is very difficult to oxidize, under aerobic conditions. UV-vis spectroscopic investigation shows that TCC oxidation proceeds through the formation of an intermediate. The intermediate has been characterized by an electron spray ionizaton-mass spectrometry study, which suggests a bidentate rather than a monodentate mode of TCC coordination in that intermediate, and this proposition have been verified by density functional theory calculation. The complex also exhibits phosphatase (with substrate p-nitrophenylphosphate) and DNA cleavage activities. The DNA cleavage activity exhibited by complex 1 most probably proceeds through a hydroxyl radical pathway. The bioactivity study suggests the possible applications of complex 1 as a site specific recognition of DNA and/or as an anticancer agent.


Asunto(s)
Níquel/química , Piperazinas/química , Cristalografía por Rayos X , ADN/química , Modelos Moleculares , Oxidación-Reducción
9.
Dalton Trans ; (40): 8755-64, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19809751

RESUMEN

Four side-off compartmental ligands L1-L4 [L1 = N,N'-ethylenebis(3-formyl-5-methyl-salicylaldimine), L2 = N,N'-1-methylethylenebis(3-formyl-5-methylsalicylaldimine), L3 = N,N'-1,1-dimethylethylenebis(3-formyl-5-methylsalicylaldimine) and L4= N,N'-cyclohexenebis(3-formyl-5-methylsalicylaldimine)] having two binding sites, N2O2 and O4, have been chosen to synthesize mononuclear and dinuclear manganese(III) complexes with the aim to study their catecholase activity using 3,5-di-tert-butylcatechol (3,5-DTBC) as substrate in the presence of molecular oxygen. In all cases only mononuclear manganese complexes (1-4) were obtained, with manganese coordination taking place at the N2O2 binding site only, irrespective of the amount of manganese salt used. All these complexes have been characterized by routine physico-chemical techniques. Complex MnL2Cl.4H2O (2) has further been structurally characterized by X-ray single crystal structure analysis. Four dinuclear manganese complexes, 5-8, were obtained after condensing the two pending formyl groups on each ligand (L1-L4) with aniline followed by reaction with MnCl2 to put the second Mn atom onto another N2O2 site. The catalytic activity of all complexes 1-8 has been investigated following the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) with molecular oxygen in two different solvents, methanol and acetonitrile. The study reveals that the catalytic activity is influenced by the solvent and to a significant extent by the backbone of the diamine and the behavior seems to be related mainly to steric rather than electronic factors. Experimental data suggest that a correlation, the lower the E(1/2) value the higher the catalytic activity, can be drawn between E(1/2) and Vmax of the complexes in a particular solvent. The EPR measurements suggest that the catalytic property of the complexes is related to the metal center(s) participation rather than to a radical mechanism.


Asunto(s)
Manganeso/química , Compuestos Organometálicos/química , Compuestos Organometálicos/síntesis química , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Ligandos , Modelos Moleculares , Estructura Molecular
10.
Inorg Chem ; 48(18): 8695-702, 2009 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-19708676

RESUMEN

Three novel dinuclear Zn(II) complexes of phenol-based compartmental macrocyclic ligands have been synthesized and characterized by routine physicochemical techniques as well as by X-ray single-crystal structure analysis. The dinuclear macrocyclic complexes 1, 2, and 3 were obtained through a 1:2 condensation reaction of 2,6-diformyl-4-methylphenol and N-(hydroxyalkyl) ethylenediamine (L(1), L(2), and L(3), respectively) in the presence of zinc(II) acetate, followed by the addition of thiocyanate anion [L(1) = N-(2-hydroxyethyl)ethylenediamine, L(2) = N-(3-hydroxypropyl)ethylenediamine, and L(3) = N-(2-hydroxypropyl)ethylenediamine]. The synthesized 18-membered macrocycles are noted to be structurally unique, and their formation proceeds with the generation of two oxazolidine side rings in complexes 1 and 3 and two oxazine side rings in 2, along with the creation of four new chiral centers in each case. Complexes 1 and 2 are characterized by a butterfly-like arrangement with the SCN ligands situated on the same side with respect to the Zn(2)O(2) moiety, whereas the centrosymmetric complex 3 exhibits a stepped arrangement with parallel methyl-phenoxy fragments (spaced at ca. 1.5 A) and trans located SCN ligands with respect to the Zn(2)O(2) core. The formation of these unusual macrocycles is considered to be zinc-mediated. Preliminary studies with the complexes show that all of them exhibit an inhibitory effect, on the cell proliferation of human stomach cancer cell line AGS, though with different degrees, where complex 3 shows the highest efficiency.


Asunto(s)
Compuestos Macrocíclicos/síntesis química , Compuestos Organometálicos/síntesis química , Oxazinas/química , Oxazoles/química , Zinc/química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Compuestos Macrocíclicos/farmacología , Estructura Molecular , Compuestos Organometálicos/farmacología
11.
Inorg Chem ; 47(16): 7083-93, 2008 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-18624404

RESUMEN

A series of dinuclear copper(II) complexes has been synthesized with the aim to investigate their applicability as potential structure and function models for the active site of catechol oxidase enzyme. They have been characterized by routine physicochemical techniques as well as by X-ray single-crystal structure analysis: [Cu 2(H 2L2 (2))(OH)(H 2O)(NO 3)](NO 3) 3.2H 2O ( 1), [Cu(HL1 (4))(H 2O)(NO 3)] 2(NO 3) 2.2H 2O ( 2), [Cu(L1 (1))(H 2O)(NO 3)] 2 ( 3), [Cu 2(L2 (3))(OH)(H 2O) 2](NO 3) 2, ( 4) and [Cu 2(L2 (1))(N 3) 3] ( 5) [L1 = 2-formyl-4-methyl-6R-iminomethyl-phenolato and L2 = 2,6-bis(R-iminomethyl)-4-methyl-phenolato; for L1 (1) and L2 (1), R = N-propylmorpholine; for L2 (2), R = N-ethylpiperazine; for L2 (3), R = N-ethylpyrrolidine, and for L1 (4), R = N-ethylmorpholine]. Dinuclear 1 and 4 possess two "end-off" compartmental ligands with exogenous mu-hydroxido and endogenous mu-phenoxido groups leading to intermetallic distances of 2.9794(15) and 2.9435(9) A, respectively; 2 and 3 are formed by two tridentate compartmental ligands where the copper centers are connected by endogenous phenoxido bridges with Cu-Cu separations of 3.0213(13) and 3.0152(15) A, respectively; 5 is built by an end-off compartmental ligand having exogenous mu-azido and endogenous mu-phenoxido groups with a Cu-Cu distance of 3.133(2) A (mean of two independent molecules). The catecholase activity of all of the complexes has been investigated in acetonitrile and methanol medium by UV-vis spectrophotometric study using 3,5-di- tert-butylcatechol (3,5-DTBC) and tetrachlorocatechol (TCC) as substrates. In acetonitrile medium, the conversion of 3,5-DTBC to 3,5-di- tert-butylbenzoquinone (3,5-DTBQ) catalyzed by 1- 5 is observed to proceed via the formation of two enzyme-substrate adducts, ES1 and ES2, detected spectroscopically for the first time. In methanol medium no such enzyme-substrate adduct has been detected, and the 3,5-DTBC to 3,5-DTBQ conversion is observed to be catalyzed by 1- 5 very efficiently. The substrate TCC forms an adduct with 2- 5 without performing further oxidation to TCQ due to the high reduction potential of TCC (in comparison with 3,5-DTBC). But most interestingly, 1 is observed to be effective even in TCC oxidation, a process never reported earlier. Kinetic experiments have been performed to determine initial rate of reactions (3,5-DTBC as substrate, in methanol medium) and the activity sequence is 1 > 5 > 2 = 4 > 3. A treatment on the basis of Michaelis-Menten model has been applied for kinetic study, suggesting that all five complexes exhibit very high turnover number, especially 1, which exhibits turnover number or K cat of 3.24 x 10 (4) (h (-1)), which is approximately 3.5 times higher than the most efficient catalyst reported to date for catecholase activity in methanol medium.


Asunto(s)
Catecol Oxidasa/metabolismo , Catecoles/metabolismo , Cobre/química , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/metabolismo , Acetonitrilos/química , Cristalografía por Rayos X , Electroquímica , Cinética , Metanol/química , Oxidación-Reducción , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...