Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
IEEE Trans Radiat Plasma Med Sci ; 2(3): 161-169, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-31098432

RESUMEN

We have used simulations and measurements to investigate the feasibility of using slanted scintillator crystal geometries as means to provide depth-of-interaction (DOI) information for a pixelated gamma ray imaging detector. The simulations were performed to estimate the fraction of scintillation light detected by the photodetector as a function of interaction location along the height of crystals with different geometries. In addition, physical measurements of the light output for these crystal geometries were obtained from individual crystals coupled to a solid state photodetector (Philips digital-SiPM DPC-3200). In agreement with previous work, we found a change in light output in the slanted region of the crystals compared to the rectangular region. The results from this study indicate the potential of using slanted crystals to gather DOI information based on light output changes as a function of the location of interaction. An examination of the measured energy spectra for the geometries evaluated here, suggests that for BGO crystals somewhere between 2 or 3 DOI bins could be implemented. Based on these results, we conceived a design for a DOI detector module that consists of two slanted crystals, each read-out by separate SiPM pixels.

2.
IEEE Trans Nucl Sci ; 63(1): 22-29, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34764496

RESUMEN

Pulse pileup events degrade the signal-to-noise ratio (SNR) of nuclear medicine data. When such events occur in multiplexed detectors, they cause spatial misposition, energy spectrum distortion and degraded timing resolution, which leads to image artifacts. Pulse pileup is pronounced in PETbox4, a bench top PET scanner dedicated to high sensitivity and high resolution imaging of mice. In that system, the combination of high absolute sensitivity, long scintillator decay time (BGO) and highly multiplexed electronics lead to a significant fraction of pulse pileup, reached at lower total activity than for comparable instruments. In this manuscript, a new pulse pileup rejection method named position shift rejection (PSR) is introduced. The performance of PSR is compared with a conventional leading edge rejection (LER) method and with no pileup rejection implemented (NoPR). A comprehensive digital pulse library was developed for objective evaluation and optimization of the PSR and LER, in which pulse waveforms were directly recorded from real measurements exactly representing the signals to be processed. Physical measurements including singles event acquisition, peak system sensitivity and NEMA NU-4 image quality phantom were also performed in the PETbox4 system to validate and compare the different pulse pile-up rejection methods. The evaluation of both physical measurements and model pulse trains demonstrated that the new PSR performs more accurate pileup event identification and avoids erroneous rejection of valid events. For the PETbox4 system, this improvement leads to a significant recovery of sensitivity at low count rates, amounting to about 1/4th of the expected true coincidence events, compared to the LER method. Furthermore, with the implementation of PSR, optimal image quality can be achieved near the peak noise equivalent count rate (NECR).

3.
IEEE Trans Nucl Sci ; 62(3): 740-747, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26478600

RESUMEN

A new phoswich detector is being developed at the Crump Institute, aiming to provide improvements in sensitivity, and spatial resolution for PET. The detector configuration is comprised of two layers of pixelated scintillator crystal arrays, a glass light guide and a light detector. The annihilation photon entrance (top) layer is a 48 × 48 array of 1.01 × 1.01 × 7 mm3 LYSO crystals. The bottom layer is a 32 × 32 array of 1.55 × 1.55 × 9 mm3 BGO crystals. A tapered, multiple-element glass lightguide is used to couple the exit end of the BGO crystal array (52 × 52 mm2) to the photosensitive area of the Position Sensitive Photomultiplier Tube (46 × 46 mm2), allowing the creation of flat panel detectors without gaps between the detector modules. Both simulations and measurements were performed to evaluate the characteristics and benefits of the proposed design. The GATE Monte Carlo simulation indicated that the total fraction of the cross layer crystal scatter (CLCS) events in singles detection mode for this detector geometry is 13.2%. The large majority of these CLCS events (10.1% out of 13.2%) deposit most of their energy in a scintillator layer other than the layer of first interaction. Identification of those CLCS events for rejection or correction may lead to improvements in data quality and imaging performance. Physical measurements with the prototype detector showed that the LYSO, BGO and CLCS events were successfully identified using the delayed charge integration (DCI) technique, with more than 95% of the LYSO and BGO crystal elements clearly resolved. The measured peak-to-valley ratios (PVR) in the flood histograms were 3.5 for LYSO and 2.0 for BGO. For LYSO, the energy resolution ranged from 9.7% to 37.0% full width at half maximum (FWHM), with a mean of 13.4 ± 4.8%. For BGO the energy resolution ranged from 16.0% to 33.9% FWHM, with a mean of 18.6 ± 3.2%. In conclusion, these results demonstrate that the proposed detector is feasible and can potentially lead to a high spatial resolution, high sensitivity and DOI PET system.

4.
IEEE Trans Nucl Sci ; 61(3): 1164-1173, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25774063

RESUMEN

Small animal positron emission tomography (PET) systems are often designed by employing close geometry configurations. Due to the different characteristics caused by geometrical factors, these tomographs require data acquisition protocols that differ from those optimized for conventional large diameter ring systems. In this work we optimized the energy window for data acquisitions with PETbox4, a 50 mm detector separation (box-like geometry) pre-clinical PET scanner, using the Geant4 Application for Tomographic Emission (GATE). The fractions of different types of events were estimated using a voxelized phantom including a mouse as well as its supporting chamber, mimicking a realistic mouse imaging environment. Separate code was developed to extract additional information about the gamma interactions for more accurate event type classification. Three types of detector backscatter events were identified in addition to the trues, phantom scatters and randoms. The energy window was optimized based on the noise equivalent count rate (NECR) and scatter fraction (SF) with lower-level discriminators (LLD) corresponding to energies from 150 keV to 450 keV. The results were validated based on the calculated image uniformity, spillover ratio (SOR) and recovery coefficient (RC) from physical measurements using the National Electrical Manufacturers Association (NEMA) NU-4 image quality phantom. These results indicate that when PETbox4 is operated with a more narrow energy window (350-650 keV), detector backscatter rejection is unnecessary. For the NEMA NU-4 image quality phantom, the SOR for the water chamber decreases by about 45% from 15.1% to 8.3%, and the SOR for the air chamber decreases by 31% from 12.0% to 8.3% at the LLDs of 150 and 350 keV, without obvious change in uniformity, further supporting the simulation based optimization. The optimization described in this work is not limited to PETbox4, but also applicable or helpful to other small inner diameter geometry scanners.

5.
Phys Med Biol ; 58(11): 3739-53, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23656911

RESUMEN

A beta camera has been developed that allows planar imaging of the spatial and temporal distribution of beta particles using a 14 × 14 mm(2) position sensitive avalanche photodiode (PSAPD). This camera system, which we call Betabox, can be directly coupled to microfluidic chips designed for cell incubation or other biological applications. Betabox allows for imaging the cellular uptake of molecular imaging probes labeled with charged particle emitters such as (18)F inside these chips. In this work, we investigate the quantitative imaging capabilities of Betabox for (18)F beta particles, in terms of background rate, efficiency, spatial resolution, and count rate. Measurements of background and spatial resolution are considered both at room temperature (21 °C ± 1 °C) and at an elevated operating temperature (37 °C ± 1 °C), as is often required for biological assays. The background rate measured with a 4 keV energy cutoff is below 2 cph mm(-2) at both 21 and 37 °C. The absolute efficiency of Betabox for the detection of (18)F positron sources in contact with a PSAPD with the surface passivated from ambient light and damage is 46% ± 1%. The lower detection limit is estimated using the Rose Criterion to be 0.2 cps mm(-2) for 1 min acquisitions and a 62 × 62 µm(2) pixel size. The upper detection limit is approximately 21 000 cps. The spatial resolution at both 21 and 37 °C ranges from 0.4 mm FWHM at the center of the field of view (FOV), and degrades to 1 mm at a distance of 5 mm away from center yielding a useful FOV of approximately 10 × 10 mm(2). We also investigate the effects on spatial resolution and sensitivity that result from the use of a polymer based microfluidic chip. For these studies we place varying layers of low-density polyethylene (LDPE) between the detector and the source and find that the spatial resolution degrades by ∼180 µm for every 100 µm of LDPE film. Sensitivity is reduced by half with the inclusion of ∼200 µm of additional LDPE film. Lastly, we demonstrate the practical utilization of Betabox, with an imaging test of its linearity, when coupled to a polydimethylsiloxane microfluidic chip designed for cell based assays.


Asunto(s)
Partículas beta , Equipos y Suministros Eléctricos , Cintigrafía/instrumentación , Técnicas Analíticas Microfluídicas
6.
Phys Med Biol ; 58(11): 3791-814, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23666034

RESUMEN

PETbox4 is a new, fully tomographic bench top PET scanner dedicated to high sensitivity and high resolution imaging of mice. This manuscript characterizes the performance of the prototype system using the National Electrical Manufacturers Association NU 4-2008 standards, including studies of sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and image quality. The PETbox4 performance is also compared with the performance of PETbox, a previous generation limited angle tomography system. PETbox4 consists of four opposing flat-panel type detectors arranged in a box-like geometry. Each panel is made by a 24 × 50 pixelated array of 1.82 × 1.82 × 7 mm bismuth germanate scintillation crystals with a crystal pitch of 1.90 mm. Each of these scintillation arrays is coupled to two Hamamatsu H8500 photomultiplier tubes via a glass light guide. Volumetric images for a 45 × 45 × 95 mm field of view (FOV) are reconstructed with a maximum likelihood expectation maximization algorithm incorporating a system model based on a parameterized detector response. With an energy window of 150-650 keV, the peak absolute sensitivity is approximately 18% at the center of FOV. The measured crystal energy resolution ranges from 13.5% to 48.3% full width at half maximum (FWHM), with a mean of 18.0%. The intrinsic detector spatial resolution is 1.5 mm FWHM in both transverse and axial directions. The reconstructed image spatial resolution for different locations in the FOV ranges from 1.32 to 1.93 mm, with an average of 1.46 mm. The peak noise equivalent count rate for the mouse-sized phantom is 35 kcps for a total activity of 1.5 MBq (40 µCi) and the scatter fraction is 28%. The standard deviation in the uniform region of the image quality phantom is 5.7%. The recovery coefficients range from 0.10 to 0.93. In comparison to the first generation two panel PETbox system, PETbox4 achieves substantial improvements on sensitivity and spatial resolution. The overall performance demonstrates that the PETbox4 scanner is suitable for producing high quality images for molecular imaging based biomedical research.


Asunto(s)
Tomografía de Emisión de Positrones/instrumentación , Animales , Fluorodesoxiglucosa F18 , Procesamiento de Imagen Asistido por Computador , Ratones
7.
IEEE Trans Nucl Sci ; 57(3): 1038-1044, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21165154

RESUMEN

PETbox is a low-cost benchtop PET scanner dedicated to high throughput preclinical imaging that is currently under development at our institute. This paper presents the design and characterization of the detectors that are used in the PETbox system. In this work, bismuth germanate scintillator was used for the detector, taking advantage of its high stopping power, high photoelectric event fraction, lack of intrinsic background radiation and low cost. The detector block was segmented into a pixelated array consisting of 20 × 44 elements, with a crystal pitch of 2.2 mm and a crystal cross section of 2 mm × 2 mm. The effective area of the array was 44 mm × 96.8 mm. The array was coupled to two Hamamatsu H8500 position sensitive photomultiplier tubes, forming a flat-panel type detector head with a sensitive area large enough to cover the whole body of a typical laboratory mouse. Two such detector heads were constructed and their performance was characterized. For one detector head, the energy resolution ranged from 16.1% to 38.5% full width at half maximum (FWHM), with a mean of 20.1%; for the other detector head, the energy resolution ranged from 15.5% to 42.7% FWHM, with a mean of 19.6%. The intrinsic spatial resolution was measured to range from 1.55 mm to 2.39 mm FWHM along the detector short axis and from 1.48 mm to 2.33 mm FWHM along the detector long axis, with an average of 1.78 mm. Coincidence timing resolution for the detector pair was measured to be 4.1 ns FWHM. These measurement results show that the detectors are suitable for our specific application.

8.
Phys Med Biol ; 55(4): 1141-55, 2010 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-20107245

RESUMEN

Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a mu-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.


Asunto(s)
Microtomografía por Rayos X/métodos , Tejido Adiposo/diagnóstico por imagen , Algoritmos , Animales , Artefactos , Huesos/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Modelos Biológicos , Fantasmas de Imagen , Polimetil Metacrilato , Programas Informáticos , Agua , Microtomografía por Rayos X/instrumentación
9.
Eur J Nucl Med Mol Imaging ; 34(8): 1291-301, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17334765

RESUMEN

PURPOSE: Currently available diagnostic techniques can be unreliable in the diagnosis of delayed fracture healing in certain clinical situations, which can lead to increased complication rates and costs to the health care system. This study sought to determine the utility of positron emission tomography (PET) scanning with (18)F-fluoride ion, which localizes in regions of high osteoblastic activity, and (18)F-fluorodeoxyglucose (FDG), an indicator of cellular glucose metabolism, in assessing bone healing in a rat femur fracture model. METHODS: Fractures were created in the femurs of immunocompetent rats. Animals in group I had a fracture produced via a manual three-point bending technique. Group II animals underwent a femoral osteotomy with placement of a 2-mm silastic spacer at the fracture site. Fracture healing was assessed with plain radiographs, (18)F-fluoride, and (18)F-FDG PET scans at 1, 2, 3, and 4-week time points after surgery. Femoral specimens were harvested for histologic analysis and manual testing of torsional and bending strength 4 weeks after surgery. RESULTS: All fractures in group I revealed abundant callus formation and bone healing, while none of the nonunion femurs were healed via assessment with manual palpation, radiographic, and histologic evaluation at the 4-week time point. (18)F-fluoride PET images of group I femurs at successive 1-week intervals revealed progressively increased signal uptake at the union site during fracture repair. In contrast, minimal tracer uptake was seen at the fracture sites in group II at all time points after surgery. Data analysis revealed statistically significant differences in mean signal intensity between groups I and II at each weekly interval. No significant differences between the two groups were seen using (18)F-FDG PET imaging at any time point. CONCLUSION: This study suggests that (18)F-fluoride PET imaging, which is an indicator of osteoblastic activity in vivo, can identify fracture nonunions at an early time point and may have a role in the assessment of longitudinal fracture healing. PET scans using (18)F-FDG were not helpful in differentiating metabolic activity between successful and delayed bone healing.


Asunto(s)
Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/patología , Fémur/diagnóstico por imagen , Fémur/patología , Fluoruros , Radioisótopos de Flúor , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Animales , Calibración , Fluoruros/química , Curación de Fractura , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/instrumentación , Ratas , Factores de Tiempo
10.
Phys Med Biol ; 49(19): 4543-61, 2004 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-15552416

RESUMEN

Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.


Asunto(s)
Simulación por Computador , Programas Informáticos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Método de Montecarlo , Reproducibilidad de los Resultados , Termodinámica
11.
J Cereb Blood Flow Metab ; 20(10): 1492-501, 2000 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-11043912

RESUMEN

With the advent and emerging importance of neurobiology and its relation to behavior, scientists desire the capability to apply noninvasive, quantitative imaging of neuronal activity to small rodents. To this end, the authors' laboratory has developed microPET, a high-resolution positron emission tomography (PET) scanner that is capable of performing in vivo molecular imaging at a resolution sufficient to resolve major structures in the rat brain. The authors report in this article that, in conjunction with 2-[18F]fluoro-2-deoxyglucose (FDG), microPET provides accurate rates of cerebral glucose metabolism (59.7 to 108.5 micromol/100 g x min) in conscious adult rats as validated by within-subject autoradiographic measurements (59.5 to 136.2 micromol/100 g x min; r = 0.88; F[1,46] = 168.0; P < 0.001). By conducting repeated quantitative scanning, the authors demonstrate the sensitivity and accuracy of FDG-microPET to detect within-subject metabolic changes induced by traumatic brain injury. In addition, the authors report that longitudinal recovery from traumatic brain injury-induced metabolic depression, as measured by quantitative FDG-microPET, is significantly correlated (r = 0.65; P < 0.05) to recovery of behavioral dysfunction, as assessed by the Morris Water Maze performance of the same rats, after injury. This is the first study to demonstrate that FDG-microPET is quantitative, reproducible, and sensitive to metabolic changes, introducing a new approach to the longitudinal study of small animal models in neuroscience research.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/metabolismo , Tomografía Computarizada de Emisión , Animales , Autorradiografía , Conducta Animal , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Lesiones Encefálicas/psicología , Desoxiglucosa/metabolismo , Fluorodesoxiglucosa F18 , Estudios Longitudinales , Masculino , Aprendizaje por Laberinto , Radiofármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función , Distribución Tisular , Heridas no Penetrantes/diagnóstico por imagen , Heridas no Penetrantes/metabolismo
12.
J Nucl Med ; 40(7): 1164-75, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10405138

RESUMEN

UNLABELLED: A new dedicated PET scanner, microPET, was designed and developed at the University of California, Los Angeles, for imaging small laboratory animals. The goal was to provide a compact system with superior spatial resolution at a fraction of the cost of a clinical PET scanner. METHODS: The system uses fiberoptic readout of individually cut lutetium oxyorthosilicate (LSO) crystals to achieve high spatial resolution. Each microPET detector consists of an 8 x 8 array of 2 x 2 x 10-mm LSO scintillation crystals that are coupled to a 64-channel photomultiplier tube by optical fibers. The tomograph consists of 30 detectors in a continuous ring with a 17.2-cm diameter and fields of view (FOVs) of 11.25 cm in the transaxial direction and 1.8 cm in the axial direction. The system has eight crystal rings and no interplane septa. It operates exclusively in the three-dimensional mode and has an electronically controlled bed that is capable of wobbling with a radius of 300 microm. We describe the performance of the tomograph in terms of its spatial, energy and timing resolution, as well as its sensitivity and counting-rate performance. We also illustrate its overall imaging performance with phantom and animal studies that demonstrate the potential applications of this device to biomedical research. RESULTS: Images reconstructed with three-dimensional filtered backprojection show a spatial resolution of 1.8 mm at the center of the FOV (CFOV), which remains <2.5 mm for the central 5 cm of the transaxial FOV. The resulting volumetric resolution of the system is <8 microL. The absolute system sensitivity measured with a 0.74 MBq (20 microCi) 68Ge point source at the CFOV is 5.62 Hz/kBq. The maximum noise equivalent counting rate obtained with a 6.4-cm diameter cylinder spanning the central 56% of the FOV is 10 kcps, whereas the scatter fraction is 37% at the CFOV for an energy window of 250-650 keV and the same diameter cylinder. CONCLUSION: This is the first PET scanner to use the new scintillator LSO and uses a novel detector design to achieve high volumetric spatial resolution. The combination of imaging characteristics of this prototype system (resolution, sensitivity, counting-rate performance and scatter fraction) opens up new possibilities in the study of animal models with PET.


Asunto(s)
Animales de Laboratorio , Tomografía Computarizada de Emisión/instrumentación , Animales , Gatos , Chlorocebus aethiops , Diseño de Equipo , Estudios de Evaluación como Asunto , Procesamiento de Imagen Asistido por Computador , Lutecio , Ratones , Fantasmas de Imagen , Ratas , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA