Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4070, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37429918

RESUMEN

Glucose transporters (GLUTs) are essential for organism-wide glucose homeostasis in mammals, and their dysfunction is associated with numerous diseases, such as diabetes and cancer. Despite structural advances, transport assays using purified GLUTs have proven to be difficult to implement, hampering deeper mechanistic insights. Here, we have optimized a transport assay in liposomes for the fructose-specific isoform GLUT5. By combining lipidomic analysis with native MS and thermal-shift assays, we replicate the GLUT5 transport activities seen in crude lipids using a small number of synthetic lipids. We conclude that GLUT5 is only active under a specific range of membrane fluidity, and that human GLUT1-4 prefers a similar lipid composition to GLUT5. Although GLUT3 is designated as the high-affinity glucose transporter, in vitro D-glucose kinetics demonstrates that GLUT1 and GLUT3 actually have a similar KM, but GLUT3 has a higher turnover. Interestingly, GLUT4 has a high KM for D-glucose and yet a very slow turnover, which may have evolved to ensure uptake regulation by insulin-dependent trafficking. Overall, we outline a much-needed transport assay for measuring GLUT kinetics and our analysis implies that high-levels of free fatty acid in membranes, as found in those suffering from metabolic disorders, could directly impair glucose uptake.


Asunto(s)
Ácidos Grasos no Esterificados , Liposomas , Humanos , Animales , Cinética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 3/genética , Glucosa , Mamíferos
3.
Nat Struct Mol Biol ; 29(2): 108-120, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173351

RESUMEN

The Na+/H+ exchanger SLC9B2, also known as NHA2, correlates with the long-sought-after Na+/Li+ exchanger linked to the pathogenesis of diabetes mellitus and essential hypertension in humans. Despite the functional importance of NHA2, structural information and the molecular basis for its ion-exchange mechanism have been lacking. Here we report the cryo-EM structures of bison NHA2 in detergent and in nanodiscs, at 3.0 and 3.5 Å resolution, respectively. The bison NHA2 structure, together with solid-state membrane-based electrophysiology, establishes the molecular basis for electroneutral ion exchange. NHA2 consists of 14 transmembrane (TM) segments, rather than the 13 TMs previously observed in mammalian Na+/H+ exchangers (NHEs) and related bacterial antiporters. The additional N-terminal helix in NHA2 forms a unique homodimer interface with a large intracellular gap between the protomers, which closes in the presence of phosphoinositol lipids. We propose that the additional N-terminal helix has evolved as a lipid-mediated remodeling switch for the regulation of NHA2 activity.


Asunto(s)
Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/metabolismo , Secuencia de Aminoácidos , Animales , Antiportadores/química , Antiportadores/genética , Antiportadores/metabolismo , Sitios de Unión , Bison/genética , Bison/metabolismo , Microscopía por Crioelectrón , Humanos , Metabolismo de los Lípidos , Espectrometría de Masas , Modelos Moleculares , Simulación de Dinámica Molecular , Nanoestructuras/química , Nanoestructuras/ultraestructura , Multimerización de Proteína , Proteolípidos/química , Proteolípidos/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Electricidad Estática
4.
Nat Protoc ; 16(12): 5357-5376, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34707255

RESUMEN

Solute carrier (SLC) transporters represent the second-largest fraction of the membrane proteome after G-protein-coupled receptors, but have been underutilized as drug targets and the function of many members of this family is still unknown. They are technically challenging to work with as they are difficult to express and highly dynamic, making them unstable in detergent solution. Many SLCs lack known inhibitors that could be utilized for stabilization. Furthermore, as they bind their physiological substrates with high micromolar to low millimolar affinities, binding and transport assays have proven to be particularly challenging to implement. Previously, we reported a GFP-based method for the overexpression and purification of membrane proteins in Saccharomyces cerevisiae. Here, we extend this expression platform with the GFP thermal shift (GFP-TS) assay, which is a simplified version of fluorescence-detection size-exclusion chromatography that combines the sample versatility of fluorescence-detection size-exclusion chromatography with the high-throughput capability of dye-based thermal shift assays. We demonstrate how GFP-TS can be used for detecting specific ligand interactions of SLC transporter fusions and measuring their affinities in crude detergent-solubilized membranes. We further show how GFP-TS can be employed on purified SLC transporter fusions to screen for specific lipid-protein interactions, which is an important complement to native mass spectrometry approaches that cannot cope easily with crude lipid-mixture preparations. This protocol is simple to perform and can be followed by researchers with a basic background in protein chemistry. Starting with an SLC transporter construct that can be expressed and purified from S. cerevisiae in a well-folded state, this protocol extension can be completed in ~4-5 d.


Asunto(s)
Proteínas Portadoras/metabolismo , Ensayos Analíticos de Alto Rendimiento , Lípidos/química , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Proteínas Portadoras/genética , Membrana Celular/química , Membrana Celular/metabolismo , Cromatografía en Gel/métodos , Detergentes/química , Genes Reporteros , Glucósidos/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Calor , Humanos , Ligandos , Microscopía Fluorescente/métodos , Saccharomyces cerevisiae/genética
5.
Nat Commun ; 9(1): 4253, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315156

RESUMEN

Membrane bilayers are made up of a myriad of different lipids that regulate the functional activity, stability, and oligomerization of many membrane proteins. Despite their importance, screening the structural and functional impact of lipid-protein interactions to identify specific lipid requirements remains a major challenge. Here, we use the FSEC-TS assay to show cardiolipin-dependent stabilization of the dimeric sodium/proton antiporter NhaA, demonstrating its ability to detect specific protein-lipid interactions. Based on the principle of FSEC-TS, we then engineer a simple thermal-shift assay (GFP-TS), which facilitates the high-throughput screening of lipid- and ligand- interactions with membrane proteins. By comparing the thermostability of medically relevant eukaryotic membrane proteins and a selection of bacterial counterparts, we reveal that eukaryotic proteins appear to have evolved to be more dependent to the presence of specific lipids.


Asunto(s)
Células Eucariotas/metabolismo , Proteínas de la Membrana/metabolismo , Células Procariotas/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Unión Proteica , Estabilidad Proteica , Intercambiadores de Sodio-Hidrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...