Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 64(13): 5344-5355, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38916159

RESUMEN

We herewith applied a priori a generic hit identification method (POEM) for difficult targets of known three-dimensional structure, relying on the simple knowledge of physicochemical and topological properties of a user-selected cavity. Searching for local similarity to a set of fragment-bound protein microenvironments of known structure, a point cloud registration algorithm is first applied to align known subpockets to the target cavity. The resulting alignment then permits us to directly pose the corresponding seed fragments in a target cavity space not typically amenable to classical docking approaches. Last, linking potentially connectable atoms by a deep generative linker enables full ligand enumeration. When applied to the WD40 repeat (WDR) central cavity of leucine-rich repeat kinase 2 (LRRK2), an unprecedented binding site, POEM was able to quickly propose 94 potential hits, five of which were subsequently confirmed to bind in vitro to LRRK2-WDR.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Simulación del Acoplamiento Molecular , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Sitios de Unión , Dominios Proteicos , Humanos , Ligandos , Unión Proteica , Repeticiones WD40 , Algoritmos
2.
J Med Chem ; 67(7): 5837-5853, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38533580

RESUMEN

The methyl-lysine reader protein SPIN1 plays important roles in various human diseases. However, targeting methyl-lysine reader proteins has been challenging. Very few cellularly active SPIN1 inhibitors have been developed. We previously reported that our G9a/GLP inhibitor UNC0638 weakly inhibited SPIN1. Here, we present our comprehensive structure-activity relationship study that led to the discovery of compound 11, a dual SPIN1 and G9a/GLP inhibitor, and compound 18 (MS8535), a SPIN1 selective inhibitor. We solved the cocrystal structure of SPIN1 in complex with 11, confirming that 11 occupied one of the three Tudor domains. Importantly, 18 displayed high selectivity for SPIN1 over 38 epigenetic targets, including G9a/GLP, and concentration dependently disrupted the interactions of SPIN1 and H3 in cells. Furthermore, 18 was bioavailable in mice. We also developed 19 (MS8535N), which was inactive against SPIN1, as a negative control of 18. Collectively, these compounds are useful chemical tools to study biological functions of SPIN1.


Asunto(s)
Lisina , Dominio Tudor , Humanos , Animales , Ratones , Relación Estructura-Actividad
3.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873443

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

4.
Commun Biol ; 6(1): 1272, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104184

RESUMEN

Cbl-b is a RING-type E3 ubiquitin ligase that is expressed in several immune cell lineages, where it negatively regulates the activity of immune cells. Cbl-b has specifically been identified as an attractive target for cancer immunotherapy due to its role in promoting an immunosuppressive tumor environment. A Cbl-b inhibitor, Nx-1607, is currently in phase I clinical trials for advanced solid tumor malignancies. Using a suite of biophysical and cellular assays, we confirm potent binding of C7683 (an analogue of Nx-1607) to the full-length Cbl-b and its N-terminal fragment containing the TKBD-LHR-RING domains. To further elucidate its mechanism of inhibition, we determined the co-crystal structure of Cbl-b with C7683, revealing the compound's interaction with both the TKBD and LHR, but not the RING domain. Here, we provide structural insights into a novel mechanism of Cbl-b inhibition by a small-molecule inhibitor that locks the protein in an inactive conformation by acting as an intramolecular glue.


Asunto(s)
Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitina-Proteína Ligasas/química , Unión Proteica , Conformación Molecular , Fosforilación
5.
Eur J Med Chem ; 260: 115713, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597437

RESUMEN

Protein arginine methyltransferases (PRMTs) catalyze the methylation of the terminal nitrogen atoms of the guanidino group of arginine of protein substrates. The aberrant expression of these methyltransferases is linked to various diseases, making them promising therapeutic targets. Currently, PRMT inhibitors are at different stages of clinical development, which validated their significance as drug targets. Structural Genomics Consortium (SGC) has reported several small fragment inhibitors as Class I PRMT inhibitors, which can be the starting point for rational drug development. Herein, we report the successful application of a fragment-based approach toward the discovery of selective Class I PRMT inhibitors. Structure-based ligand optimization was performed by strategic incorporation of fragment hits on the drug-like quinazoline core and subsequent fragment growth in the desired orientation towards identified hydrophobic shelf. A clear SAR was established, and the lead compounds 55 and 56 displayed potent inhibition of Class I PRMTs with IC50 values of 92 nM and 37 nM against PRMT4. We report the systematic development of potent Class I PRMT inhibitors with good potency and about 100-fold selectivity when tested against a panel of 31 human DNA, RNA, and protein lysine and arginine methyltransferases. These improved small molecules will provide new options for the development of novel potent and selective PRMT4 inhibitors.


Asunto(s)
Diseño de Fármacos , Proteína-Arginina N-Metiltransferasas , Humanos , Desarrollo de Medicamentos , Arginina , Catálisis
6.
J Med Chem ; 66(12): 7785-7803, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37294077

RESUMEN

An under-explored target for SARS-CoV-2 is the S-adenosyl methionine (SAM)-dependent methyltransferase Nsp14, which methylates the N7-guanosine of viral RNA at the 5'-end, allowing the virus to evade host immune response. We sought new Nsp14 inhibitors with three large library docking strategies. First, up to 1.1 billion lead-like molecules were docked against the enzyme's SAM site, leading to three inhibitors with IC50 values from 6 to 50 µM. Second, docking a library of 16 million fragments revealed 9 new inhibitors with IC50 values from 12 to 341 µM. Third, docking a library of 25 million electrophiles to covalently modify Cys387 revealed 7 inhibitors with IC50 values from 3.5 to 39 µM. Overall, 32 inhibitors encompassing 11 chemotypes had IC50 values < 50 µM and 5 inhibitors in 4 chemotypes had IC50 values < 10 µM. These molecules are among the first non-SAM-like inhibitors of Nsp14, providing starting points for future optimization.


Asunto(s)
COVID-19 , Metiltransferasas , Humanos , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , ARN Viral/genética , Exorribonucleasas
7.
Biochim Biophys Acta Gen Subj ; 1867(4): 130319, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764586

RESUMEN

Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.


Asunto(s)
COVID-19 , Humanos , Metiltransferasas/química , Pandemias , ARN , SARS-CoV-2/genética
8.
Protein Sci ; 31(9): e4395, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36040262

RESUMEN

SARS-CoV-2 nsp10-nsp16 complex is a 2'-O-methyltransferase (MTase) involved in viral RNA capping, enabling the virus to evade the immune system in humans. It has been considered a valuable target in the discovery of antiviral therapeutics, as the RNA cap formation is crucial for viral propagation. Through cross-screening of the inhibitors that we previously reported for SARS-CoV-2 nsp14 MTase activity against nsp10-nsp16 complex, we identified two compounds (SS148 and WZ16) that also inhibited nsp16 MTase activity. To further enable the chemical optimization of these two compounds towards more potent and selective dual nsp14/nsp16 MTase inhibitors, we determined the crystal structure of nsp10-nsp16 in complex with each of SS148 and WZ16. As expected, the structures revealed the binding of both compounds to S-adenosyl-L-methionine (SAM) binding pocket of nsp16. However, our structural data along with the biochemical mechanism of action determination revealed an RNA-dependent SAM-competitive pattern of inhibition for WZ16, clearly suggesting that binding of the RNA first may help the binding of some SAM competitive inhibitors. Both compounds also showed some degree of selectivity against human protein MTases, an indication of great potential for chemical optimization towards more potent and selective inhibitors of coronavirus MTases.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Metiltransferasas/química , ARN Viral/metabolismo , Proteínas no Estructurales Virales/química
9.
Biochim Biophys Acta Gene Regul Mech ; 1865(5): 194845, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35907431

RESUMEN

Posttranslational modification of histones plays a critical role in regulation of gene expression. These modifications include methylation and acetylation that work in combination to establish transcriptionally active or repressive chromatin states. Histone methyltransferases (HMTs) often have variable levels of activity in vitro depending on the form of substrate used. For example, certain HMTs prefer nucleosomes extracted from human or chicken cells as substrate compared to recombinant nucleosomes reconstituted from bacterially produced histones. We considered that pre-existing histone modifications in the extracted nucleosomes can affect the efficiency of catalysis by HMTs, suggesting functional cross-talk between histone-modifying enzymes within a complex network of interdependent activities. Here we systematically investigated the effect of nucleosome acetylation by EP300, GCN5L2 (KAT2A) and MYST1 (MOF) on histone 3 lysine 4 (H3K4), H3K9 and H4K20 methylation of nucleosomes by nine HMTs (MLL1, MLL3, SET1B, G9a, SETDB1, SUV39H1, SUV39H2, SUV420H1 and SUV420H2) in vitro. Our full kinetic characterization data indicate that site-specific acetylation of nucleosomal histones by specific acetyltransferases can create nucleosomes that are better substrates for specific HMTs. This includes significant increases in catalytic efficiencies of SETDB1, G9a and SUV420H2 after nucleosome acetylation in vitro.


Asunto(s)
Histonas , Nucleosomas , Acetilación , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional
10.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782742

RESUMEN

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Asunto(s)
Nucléolo Celular/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Sondas Moleculares/química , Dominios Proteicos , Proteínas Represoras/metabolismo , Metilación , Mieloma Múltiple/metabolismo , Nucleosomas/metabolismo
11.
SLAS Discov ; 26(9): 1200-1211, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34192965

RESUMEN

The COVID-19 pandemic has clearly brought the healthcare systems worldwide to a breaking point, along with devastating socioeconomic consequences. The SARS-CoV-2 virus, which causes the disease, uses RNA capping to evade the human immune system. Nonstructural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small-molecule inhibitors of nsp14 methyltransferase (MTase) activity, we developed and employed a radiometric MTase assay to screen a library of 161 in-house synthesized S-adenosylmethionine (SAM) competitive MTase inhibitors and SAM analogs. Among six identified screening hits, SS148 inhibited nsp14 MTase activity with an IC50 value of 70 ± 6 nM and was selective against 20 human protein lysine MTases, indicating significant differences in SAM binding sites. Interestingly, DS0464 with an IC50 value of 1.1 ± 0.2 µM showed a bisubstrate competitive inhibitor mechanism of action. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein MTases. The structure-activity relationship provided by these compounds should guide the optimization of selective bisubstrate nsp14 inhibitors and may provide a path toward a novel class of antivirals against COVID-19, and possibly other coronaviruses.


Asunto(s)
COVID-19/genética , Exorribonucleasas/genética , Unión Proteica/genética , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética , Antivirales/farmacología , Sitios de Unión/genética , COVID-19/virología , Humanos , Metilación , Pandemias , ARN Viral/genética , SARS-CoV-2/patogenicidad , Replicación Viral/genética
12.
ChemMedChem ; 16(19): 2982-3002, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34164919

RESUMEN

The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth and proliferation. Dysregulation of the Hippo pathway due to overexpression of TEAD has been reported in a wide range of cancers. Inhibition of TEAD represses the expression of associated genes, demonstrating the value of this transcription factor for the development of novel anti-cancer therapies. We report herein the design, synthesis and biological evaluation of LM98, a flufenamic acid analogue. LM98 shows strong affinity to TEAD, inhibits its autopalmitoylation and reduces the YAP-TEAD transcriptional activity. Binding of LM98 to TEAD was supported by 19 F-NMR studies while co-crystallization experiments confirmed that LM98 is anchored within the palmitic acid pocket of TEAD. LM98 reduces the expression of CTGF and Cyr61, inhibits MDA-MB-231 breast cancer cell migration and arrests cell cycling in the S phase during cell division.


Asunto(s)
Antineoplásicos/farmacología , Ácido Flufenámico/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción de Dominio TEA/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Ácido Flufenámico/química , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Transcripción de Dominio TEA/metabolismo , Células Tumorales Cultivadas
13.
ACS Infect Dis ; 7(8): 2214-2220, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34152728

RESUMEN

In this study, we have focused on the structure-based design of the inhibitors of one of the two SARS-CoV-2 methyltransferases (MTases), nsp14. This MTase catalyzes the transfer of the methyl group from S-adenosyl-l-methionine (SAM) to cap the guanosine triphosphate moiety of the newly synthesized viral RNA, yielding the methylated capped RNA and S-adenosyl-l-homocysteine (SAH). As the crystal structure of SARS-CoV-2 nsp14 is unknown, we have taken advantage of its high homology to SARS-CoV nsp14 and prepared its homology model, which has allowed us to identify novel SAH derivatives modified at the adenine nucleobase as inhibitors of this important viral target. We have synthesized and tested the designed compounds in vitro and shown that these derivatives exert unprecedented inhibitory activity against this crucial enzyme. The docking studies nicely explain the contribution of an aromatic part attached by a linker to the position 7 of the 7-deaza analogues of SAH.


Asunto(s)
COVID-19 , Metiltransferasas , Exorribonucleasas , Humanos , Ligandos , Metiltransferasas/genética , SARS-CoV-2 , Proteínas no Estructurales Virales
14.
SLAS Discov ; 26(8): 947-960, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34154424

RESUMEN

SMYD3 (SET and MYND domain-containing protein 3) is a protein lysine methyltransferase that was initially described as an H3K4 methyltransferase involved in transcriptional regulation. SMYD3 has been reported to methylate and regulate several nonhistone proteins relevant to cancer, including mitogen-activated protein kinase kinase kinase 2 (MAP3K2), vascular endothelial growth factor receptor 1 (VEGFR1), and the human epidermal growth factor receptor 2 (HER2). In addition, overexpression of SMYD3 has been linked to poor prognosis in certain cancers, suggesting SMYD3 as a potential oncogene and attractive cancer drug target. Here we report the discovery of a novel SMYD3 inhibitor. We performed a thermal shift assay (TSA)-based high-throughput screening (HTS) with 410,000 compounds and identified a novel benzodiazepine-based SMYD3 inhibitor series. Crystal structures revealed that this series binds to the substrate binding site and occupies the hydrophobic lysine binding pocket via an unprecedented hydrogen bonding pattern. Biochemical assays showed substrate competitive behavior. Following optimization and extensive biophysical validation with surface plasmon resonance (SPR) analysis and isothermal titration calorimetry (ITC), we identified BAY-6035, which shows nanomolar potency and selectivity against kinases and other PKMTs. Furthermore, BAY-6035 specifically inhibits methylation of MAP3K2 by SMYD3 in a cellular mechanistic assay with an IC50 <100 nM. Moreover, we describe a congeneric negative control to BAY-6035. In summary, BAY-6035 is a novel selective and potent SMYD3 inhibitor probe that will foster the exploration of the biological role of SMYD3 in diseased and nondiseased tissues.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/química , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
15.
bioRxiv ; 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33619486

RESUMEN

The COVID-19 pandemic has clearly brought the healthcare systems world-wide to a breaking point along with devastating socioeconomic consequences. The SARS-CoV-2 virus which causes the disease uses RNA capping to evade the human immune system. Non-structural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small molecule inhibitors of nsp14 methyltransferase (MT) activity, we developed and employed a radiometric MT assay to screen a library of 161 in house synthesized S-adenosylmethionine (SAM) competitive methyltransferase inhibitors and SAM analogs. Among seven identified screening hits, SS148 inhibited nsp14 MT activity with an IC 50 value of 70 ± 6 nM and was selective against 20 human protein lysine methyltransferases indicating significant differences in SAM binding sites. Interestingly, DS0464 with IC 50 value of 1.1 ± 0.2 µM showed a bi-substrate competitive inhibitor mechanism of action. Modeling the binding of this compound to nsp14 suggests that the terminal phenyl group extends into the RNA binding site. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein methyltransferases. The structure-activity relationship provided by these compounds should guide the optimization of selective bi-substrate nsp14 inhibitors and may provide a path towards a novel class of antivirals against COVID-19, and possibly other coronaviruses.

16.
J Med Chem ; 64(7): 3697-3706, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33591753

RESUMEN

Protein arginine methyltransferase 6 (PRMT6) catalyzes monomethylation and asymmetric dimethylation of arginine residues in various proteins, plays important roles in biological processes, and is associated with multiple cancers. To date, a highly selective PRMT6 inhibitor has not been reported. Here we report the discovery and characterization of a first-in-class, highly selective allosteric inhibitor of PRMT6, (R)-2 (SGC6870). (R)-2 is a potent PRMT6 inhibitor (IC50 = 77 ± 6 nM) with outstanding selectivity for PRMT6 over a broad panel of other methyltransferases and nonepigenetic targets. Notably, the crystal structure of the PRMT6-(R)-2 complex and kinetic studies revealed (R)-2 binds a unique, induced allosteric pocket. Additionally, (R)-2 engages PRMT6 and potently inhibits its methyltransferase activity in cells. Moreover, (R)-2's enantiomer, (S)-2 (SGC6870N), is inactive against PRMT6 and can be utilized as a negative control. Collectively, (R)-2 is a well-characterized PRMT6 chemical probe and a valuable tool for further investigating PRMT6 functions in health and disease.


Asunto(s)
Benzodiazepinonas/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Regulación Alostérica , Sitio Alostérico , Benzodiazepinonas/síntesis química , Benzodiazepinonas/metabolismo , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , Estereoisomerismo
17.
J Med Chem ; 63(10): 5477-5487, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32367723

RESUMEN

Protein arginine methyltransferase 6 (PRMT6) plays important roles in several biological processes associated with multiple cancers. Well-characterized potent, selective, and cell-active PRMT6 inhibitors are invaluable tools for testing biological and therapeutic hypotheses. Although there are several known reversible PRMT6 inhibitors, covalent PRMT6 inhibitors have not been reported. Based on a cocrystal structure of PRMT6-MS023 (a type I PRMT inhibitor), we discovered the first potent and cell-active irreversible PRMT6 inhibitor, 4 (MS117). The covalent binding mode of compound 4 to PRMT6 was confirmed by mass spectrometry and kinetic studies and by a cocrystal structure. Compound 4 did not covalently modify other closely related PRMTs, potently inhibited PRMT6 in cells, and was selective for PRMT6 over other methyltransferases. We also developed two structurally similar control compounds, 5 (MS167) and 7 (MS168). We provide these valuable chemical tools to the scientific community for further studying PRMT6 physiological and pathophysiological functions.


Asunto(s)
Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Proteínas Nucleares/metabolismo , Estructura Secundaria de Proteína , Proteína-Arginina N-Metiltransferasas/metabolismo
18.
J Med Chem ; 62(20): 9008-9025, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31550156

RESUMEN

Modifications of histone tails, including lysine/arginine methylation, provide the basis of a "chromatin or histone code". Proteins that contain "reader" domains can bind to these modifications and form specific effector complexes, which ultimately mediate chromatin function. The spindlin1 (SPIN1) protein contains three Tudor methyllysine/arginine reader domains and was identified as a putative oncogene and transcriptional coactivator. Here we report a SPIN1 chemical probe inhibitor with low nanomolar in vitro activity, exquisite selectivity on a panel of methyl reader and writer proteins, and with submicromolar cellular activity. X-ray crystallography showed that this Tudor domain chemical probe simultaneously engages Tudor domains 1 and 2 via a bidentate binding mode. Small molecule inhibition and siRNA knockdown of SPIN1, as well as chemoproteomic studies, identified genes which are transcriptionally regulated by SPIN1 in squamous cell carcinoma and suggest that SPIN1 may have a role in cancer related inflammation and/or cancer metastasis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Sondas Moleculares/química , Fosfoproteínas/metabolismo , Dominio Tudor , Proteínas de Ciclo Celular/química , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Proteínas Asociadas a Microtúbulos/química , Fosfoproteínas/química , Conformación Proteica
19.
J Med Chem ; 62(20): 8996-9007, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31260300

RESUMEN

By screening an epigenetic compound library, we identified that UNC0638, a highly potent inhibitor of the histone methyltransferases G9a and GLP, was a weak inhibitor of SPIN1 (spindlin 1), a methyllysine reader protein. Our optimization of this weak hit resulted in the discovery of a potent, selective, and cell-active SPIN1 inhibitor, compound 3 (MS31). Compound 3 potently inhibited binding of trimethyllysine-containing peptides to SPIN1, displayed high binding affinity, was highly selective for SPIN1 over other epigenetic readers and writers, directly engaged SPIN1 in cells, and was not toxic to nontumorigenic cells. The crystal structure of the SPIN1-compound 3 complex indicated that it selectively binds tudor domain II of SPIN1. We also designed a structurally similar but inactive compound 4 (MS31N) as a negative control. Our results have demonstrated for the first time that potent, selective, and cell-active fragment-like inhibitors can be generated by targeting a single tudor domain.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Descubrimiento de Drogas , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Fosfoproteínas/antagonistas & inhibidores , Quinazolinas/farmacología , Cromatografía Líquida de Alta Presión , Cristalografía por Rayos X , Células HEK293 , Humanos , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética , Quinazolinas/química
20.
SLAS Discov ; 23(9): 930-940, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29562800

RESUMEN

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a multidomain protein that plays a critical role in maintaining DNA methylation patterns through concurrent recognition of hemimethylated DNA and histone marks by various domains, and recruitment of DNA methyltransferase 1 (DNMT1). UHRF1 is overexpressed in various cancers, including breast cancer. The tandem tudor domain (TTD) of UHRF1 specifically and tightly binds to histone H3 di- or trimethylated at lysine 9 (H3K9me2 or H3K9me3, respectively), and this binding is essential for UHRF1 function. We developed an H3K9me3 peptide displacement assay, which was used to screen a library of 44,000 compounds for small molecules that disrupt the UHRF1-H3K9me3 interaction. This screen resulted in the identification of NV01, which bound to UHRF1-TTD with a Kd value of 5 µM. The structure of UHRF1-TTD in complex with NV01 confirmed binding to the H3K9me3-binding pocket. Limited structure-based optimization of NV01 led to the discovery of NV03 (Kd of 2.4 µM). These well-characterized small-molecule antagonists of the UHRF1-H3K9me2/3 interaction could be valuable starting chemical matter for developing more potent and cell-active probes toward further characterizing UHRF1 function, with possible applications as anticancer therapeutics.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/química , Descubrimiento de Drogas/métodos , Histonas/química , Unión Proteica/efectos de los fármacos , Dominio Tudor , Sitios de Unión , Bioensayo/métodos , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Histonas/metabolismo , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...