Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IDCases ; 27: e01395, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35059295

RESUMEN

Loofah sponges have been implicated in skin and soft tissue infections due to their ability to harbor bacteria and cause microtrauma to the skin. In this case report, we describe a case of impetigo and cellulitis due to Streptococcus pyogenes complicated by secondary spread through loofah sponge use. The same organism was cultured from the infected body sites and loofah sponge, and a comparative genomic analysis confirmed that the isolates were identical.

2.
Viruses ; 14(1)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35062362

RESUMEN

Hepatitis A virus (HAV) is an emerging public health concern and there is an urgent need for ways to rapidly identify cases so that outbreaks can be managed effectively. Conventional testing for HAV relies on anti-HAV IgM seropositivity. However, studies estimate that 10-30% of patients may not be diagnosed by serology. Molecular assays that can directly detect viral nucleic acids have the potential to improve diagnosis, which is key to prevent the spread of infections. In this study, we developed a real-time PCR (RT-PCR) assay to detect HAV RNA for the identification of acute HAV infection. Primers were designed to target the conserved 5'-untranslated region (5'-UTR) of HAV, and the assay was optimized on both the Qiagen Rotor-Gene and the BD MAX. We successfully detected HAV from patient serum and stool samples with moderate differences in sensitivity and specificity depending on the platform used. Our results highlight the clinical utility of using a molecular assay to detect HAV from various specimen types that can be implemented in hospitals to assist with diagnostics, treatment and prevention.


Asunto(s)
Heces/virología , Virus de la Hepatitis A/genética , Hepatitis A/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Suero/virología , Cartilla de ADN , Brotes de Enfermedades , Genotipo , Hepatitis A/virología , Humanos , Límite de Detección , Filogenia , ARN Viral , Sensibilidad y Especificidad
3.
PLoS Pathog ; 17(5): e1009532, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33984072

RESUMEN

Bacteria inhabit diverse environmental niches and consequently must modulate their metabolism to adapt to stress. The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (collectively referred to as (p)ppGpp) are essential for survival during nutrient starvation. (p)ppGpp is synthesized by the RelA-SpoT homologue (RSH) protein family and coordinates the control of cellular metabolism through its combined effect on over 50 proteins. While the role of (p)ppGpp has largely been associated with nutrient limitation, recent studies have shown that (p)ppGpp and related nucleotides have a previously underappreciated effect on different aspects of bacterial physiology, such as maintaining cellular homeostasis and regulating bacterial interactions with a host, other bacteria, or phages. (p)ppGpp produced by pathogenic bacteria facilitates the evasion of host defenses such as reactive nitrogen intermediates, acidic pH, and the complement system. Additionally, (p)ppGpp and pyrophosphorylated derivatives of canonical adenosine nucleotides called (p)ppApp are emerging as effectors of bacterial toxin proteins. Here, we review the RSH protein family with a focus on its unconventional roles during host infection and bacterial competition.


Asunto(s)
Bacterias/metabolismo , Infecciones Bacterianas/microbiología , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/metabolismo , Difosfatos/metabolismo , Nucleótidos/metabolismo , Estrés Fisiológico , Animales , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Fosforilación
4.
Infect Immun ; 89(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33139383

RESUMEN

The stringent response is an essential mechanism of metabolic reprogramming during environmental stress that is mediated by the nucleotide alarmones guanosine tetraphosphate and pentaphosphate [(p)ppGpp]. In addition to physiological adaptations, (p)ppGpp also regulates virulence programs in pathogenic bacteria, including Salmonella enterica serovar Typhimurium. S Typhimurium is a common cause of acute gastroenteritis, but it may also spread to systemic tissues, resulting in severe clinical outcomes. During infection, S Typhimurium encounters a broad repertoire of immune defenses that it must evade for successful host infection. Here, we examined the role of the stringent response in S Typhimurium resistance to complement-mediated killing and found that the (p)ppGpp synthetase-hydrolase, SpoT, is required for bacterial survival in human serum. We identified the nucleotide hydrolase, PpnN, as a target of the stringent response that is required to promote bacterial fitness in serum. Using chromatography and mass spectrometry, we show that PpnN hydrolyzes purine and pyrimidine monophosphates to generate free nucleobases and ribose 5'-phosphate, and that this metabolic activity is required for conferring resistance to complement killing. In addition to PpnN, we show that (p)ppGpp is required for the biosynthesis of the very long and long O-antigen in the outer membrane, known to be important for complement resistance. Our results provide new insights into the role of the stringent response in mediating evasion of the innate immune system by pathogenic bacteria.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Ligasas/inmunología , N-Glicosil Hidrolasas/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Virulencia/genética , Virulencia/inmunología , Regulación Bacteriana de la Expresión Génica , Variación Genética , Humanos , Inmunidad Innata , Ligasas/genética , N-Glicosil Hidrolasas/genética , Serogrupo
5.
PLoS Pathog ; 13(7): e1006497, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28704543

RESUMEN

The evolution of bacterial pathogenicity, heavily influenced by horizontal gene transfer, provides new virulence factors and regulatory connections that alter bacterial phenotypes. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) are chromosomal regions that were acquired at different evolutionary times and are essential for Salmonella virulence. In the intestine of mammalian hosts, Salmonella expresses the SPI-1 genes that mediate its invasion to the gut epithelium. Once inside the cells, Salmonella down-regulates the SPI-1 genes and induces the expression of the SPI-2 genes, which favor its intracellular replication. The mechanism by which the invasion machinery is deactivated following successful invasion of host cells is not known. Here, we show that the SPI-2 encoded transcriptional regulator SsrB, which positively controls SPI-2, acts as a dual regulator that represses expression of SPI-1 during intracellular stages of infection. The mechanism of this SPI-1 repression by SsrB was direct and acts upon the hilD and hilA regulatory genes. The phenotypic effect of this molecular switch activity was a significant reduction in invasion ability of S. enterica serovar Typhimurium while promoting the expression of genes required for intracellular survival. During mouse infections, Salmonella mutants lacking SsrB had high levels of hilA (SPI-1) transcriptional activity whereas introducing a constitutively active SsrB led to significant hilA repression. Thus, our results reveal a novel SsrB-mediated mechanism of transcriptional crosstalk between SPI-1 and SPI-2 that helps Salmonella transition to the intracellular lifestyle.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Islas Genómicas , Humanos , Ratones , Salmonella typhimurium/genética , Factores de Transcripción/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...