Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(22)2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37998353

RESUMEN

People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation. Therapeutics for pwCF, called CFTR modulators, target the CFTR defect directly, restoring airway surface hydration and mucociliary clearance. However, even with CFTR modulator therapy, bacterial infections persist. To develop a relevant model of diseased airway epithelium, we established a primary human airway epithelium culture system with persistent Pseudomonas aeruginosa infection. We used this model to examine the effects of CFTR modulators on CFTR maturation, CFTR function, and bacterial persistence. We found that the presence of P. aeruginosa increased CFTR mRNA, protein, and function. We also found that CFTR modulators caused a decrease in P. aeruginosa burden. These results demonstrate the importance of including live bacteria to accurately model the CF lung, and that understanding the effects of infection on CFTR rescue by CFTR modulators is critical to evaluating and optimizing drug therapies for all pwCF.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Técnicas de Cocultivo , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pulmón/metabolismo
2.
Mol Biol Cell ; 34(12): ar118, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37647143

RESUMEN

Production of large amounts of histone proteins during S phase is critical for proper chromatin formation and genome integrity. This process is achieved in part by the presence of multiple copies of replication dependent (RD) histone genes that occur in one or more clusters in metazoan genomes. In addition, RD histone gene clusters are associated with a specialized nuclear body, the histone locus body (HLB), which facilitates efficient transcription and 3' end-processing of RD histone mRNA. How all five RD histone genes within these clusters are coordinately regulated such that neither too few nor too many histones are produced, a process referred to as histone homeostasis, is not fully understood. Here, we explored the mechanisms of coordinate regulation between multiple RD histone loci in Drosophila melanogaster and Drosophila virilis. We provide evidence for functional competition between endogenous and ectopic transgenic histone arrays located at different chromosomal locations in D. melanogaster that helps maintain proper histone mRNA levels. Consistent with this model, in both species we found that individual histone gene arrays can independently assemble an HLB that results in active histone transcription. Our findings suggest a role for HLB assembly in coordinating RD histone gene expression to maintain histone homeostasis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Histonas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostasis , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119322, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35820484

RESUMEN

The SIN3 scaffolding protein is a conserved transcriptional regulator known to fine-tune gene expression. In Drosophila, there are two major isoforms of SIN3, SIN3 220 and SIN3 187, which each assemble into multi-subunit histone modifying complexes. The isoforms have distinct developmental expression patterns and non-redundant functions. Gene regulatory network analyses indicate that both isoforms affect genes encoding proteins in pathways such as the cell cycle and cell morphogenesis. Interestingly, the SIN3 187 isoform uniquely regulates a subset of pathways including post-embryonic development, phosphate metabolism and apoptosis. Target genes in the phosphate metabolism pathway include nuclear-encoded mitochondrial genes coding for proteins responsible for oxidative phosphorylation. Here, we investigate the physiological effects of SIN3 isoforms on energy metabolism and cell survival. We find that ectopic expression of SIN3 187 represses expression of several nuclear-encoded mitochondrial genes affecting production of ATP and generation of reactive oxygen species (ROS). Forced expression of SIN3 187 also activates several pro-apoptotic and represses a few anti-apoptotic genes. In the SIN3 187 expressing cells, these gene expression patterns are accompanied with an increased sensitivity to paraquat-mediated oxidative stress. These findings indicate that SIN3 187 influences the regulation of mitochondrial function, apoptosis and oxidative stress response in ways that are dissimilar from SIN3 220. The data suggest that the distinct SIN3 histone modifying complexes are deployed in different cellular contexts to maintain cellular homeostasis.


Asunto(s)
Proteínas de Drosophila , Animales , Supervivencia Celular/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metabolismo Energético/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Fosfatos/metabolismo , Isoformas de Proteínas/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo
4.
Mol Biol Cell ; 31(14): 1525-1537, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32401666

RESUMEN

The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein-protein and/or protein-DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.


Asunto(s)
Histonas/genética , Histonas/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Genoma/genética , Homocigoto , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , Transcripción Genética/genética
5.
Epigenetics Chromatin ; 11(1): 17, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29665841

RESUMEN

SIN3 is a global transcriptional coregulator that governs expression of a large repertoire of gene targets. It is an important player in gene regulation, which can repress or activate diverse gene targets in a context-dependent manner. SIN3 is required for several vital biological processes such as cell proliferation, energy metabolism, organ development, and cellular senescence. The functional flexibility of SIN3 arises from its ability to interact with a large variety of partners through protein interaction domains that are conserved across species, ranging from yeast to mammals. Several isoforms of SIN3 are present in these different species that can perform common and specialized functions through interactions with distinct enzymes and DNA-binding partners. Although SIN3 has been well studied due to its wide-ranging functions and highly conserved interaction domains, precise roles of individual SIN3 isoforms have received less attention. In this review, we discuss the differences in structure and function of distinct SIN3 isoforms and provide possible avenues to understand the complete picture of regulation by SIN3.


Asunto(s)
Complejo Correpresor Histona Desacetilasa y Sin3/química , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Transcripción Genética , Animales , Secuencia Conservada , Regulación de la Expresión Génica , Humanos , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 291(22): 11566-71, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27129248

RESUMEN

SIN3 is a transcriptional corepressor that acts as a scaffold for a histone deacetylase (HDAC) complex. The SIN3 complex regulates various biological processes, including organ development, cell proliferation, and energy metabolism. Little is known, however, about the regulation of SIN3 itself. There are two major isoforms of Drosophila SIN3, 187 and 220, which are differentially expressed. Intrigued by the developmentally timed exchange of SIN3 isoforms, we examined whether SIN3 187 controls the fate of the 220 counterpart. Here, we show that in developing tissue, there is interplay between SIN3 isoforms: when SIN3 187 protein levels increase, SIN3 220 protein decreases concomitantly. SIN3 187 has a dual effect on SIN3 220. Expression of 187 leads to reduced 220 transcript, while also increasing the turnover of SIN3 220 protein by the proteasome. These data support the presence of a novel, inter-isoform-dependent mechanism that regulates the amount of SIN3 protein, and potentially the level of specific SIN3 complexes, during distinct developmental stages.


Asunto(s)
Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Represoras/metabolismo , Animales , Western Blotting , Células Cultivadas , Drosophila/crecimiento & desarrollo , Técnicas para Inmunoenzimas , Isoformas de Proteínas , Proteolisis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Complejo Correpresor Histona Desacetilasa y Sin3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...