Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Clean Prod ; 307: 1-8, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34924700

RESUMEN

Few studies have investigated the performance of anaerobic digestion (AD) to convert animal and agro-industrial wastes to organic fertilizers over a long-term field conditions. This paper studied three large-scale mesophilic digesters (D1eD3) over two years for their effects on feedstocks, which were dairy manure for D1 and D2 and co-digestion mixed manure and agro-industrial wastes for D3. Hydraulic retention times (HRT) were 9 d for D1, 12 d for D2, and 34 d for D3. Digester influent and effluent samples were taken every two months from the digesters and analyzed for pH, and concentrations of total solids (TS), ammonium nitrogen (NH4-N), total Kjeldahl nitrogen (TKN), total phosphorus (TP), and eight metals. The study revealed high variability in converting feedstock in the three digesters. Compared with their respective influent, the mean digester effluent pH decreased from 7.9 by 0.6 in D1 (p < 0.01) and by 0.3 in D2 (p < 0.01), but it increased from 6.1 by 1.8 in D3 (p < 0.01). The mean digester effluent TS increased from 3.4% by 0.1% (p > 0.05) in D1, but it decreased from 4.9% by 1.3% in D2 (p < 0.05) and from 12.3% by 4.8% in D3 (p < 0.01). All three digesters significantly increased NH4-N concentrations by 21.4 e81.8% (p < 0.05), but insignificantly changed TKN and TP concentrations (p > 0.05). Effects of AD on all metal concentrations were mixed and were insignificant (p > 0.05) because of large concentration variations. However, study of a ratio quotient (q Mg ) using magnesium (Mg) as the reference discovered accumulation of NH4-N, copper, potassium, and sodium, but loss of TKN, TP, iron, manganese, zinc, and calcium during AD for D2 and D3. The impact of AD conversion was closely related with types of feedstock (on pH) and HRT (on TS and NH4-N). The results of this study can assist in developing strategies for cleaner production using AD in an environmentally sustainable manner.

2.
Sci Total Environ ; 613-614: 724-735, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938215

RESUMEN

Large quantities of biofuel production are expected from bioenergy crops at a national scale to meet US biofuel goals. It is important to study biomass production of bioenergy crops and the impacts of these crops on water quantity and quality to identify environment-friendly and productive biofeedstock systems. SWAT2012 with a new tile drainage routine and improved perennial grass and tree growth simulation was used to model long-term annual biomass yields, streamflow, tile flow, sediment load, and nutrient losses under various bioenergy scenarios in an extensively agricultural watershed in the Midwestern US. Simulated results from bioenergy crop scenarios were compared with those from the baseline. The results showed that simulated annual crop yields were similar to observed county level values for corn and soybeans, and were reasonable for Miscanthus, switchgrass and hybrid poplar. Removal of 38% of corn stover (3.74Mg/ha/yr) with Miscanthus production on highly erodible areas and marginal land (17.49Mg/ha/yr) provided the highest biofeedstock production (279,000Mg/yr). Streamflow, tile flow, erosion and nutrient losses were reduced under bioenergy crop scenarios of bioenergy crops on highly erodible areas and marginal land. Corn stover removal did not result in significant water quality changes. The increase in sediment and nutrient losses under corn stover removal could be offset with the combination of other bioenergy crops. Potential areas for bioenergy crop production when meeting the criteria above were small (10.88km2), thus the ability to produce biomass and improve water quality was not substantial. The study showed that corn stover removal with bioenergy crops both on highly erodible areas and marginal land could provide more biofuel production relative to the baseline, and was beneficial to water quality at the watershed scale, providing guidance for further research on evaluation of bioenergy crop scenarios in a typical extensively tile-drained watershed in the Midwestern U.S.

3.
Sci Total Environ ; 601-602: 580-593, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575835

RESUMEN

Best management practices (BMPs) have been widely used to address hydrology and water quality issues in both agricultural and urban areas. Increasing numbers of BMPs have been studied in research projects and implemented in watershed management projects, but a gap remains in quantifying their effectiveness through time. In this paper, we review the current knowledge about BMP efficiencies, which indicates that most empirical studies have focused on short-term efficiencies, while few have explored long-term efficiencies. Most simulation efforts that consider BMPs assume constant performance irrespective of ages of the practices, generally based on anticipated maintenance activities or the expected performance over the life of the BMP(s). However, efficiencies of BMPs likely change over time irrespective of maintenance due to factors such as degradation of structures and accumulation of pollutants. Generally, the impacts of BMPs implemented in water quality protection programs at watershed levels have not been as rapid or large as expected, possibly due to overly high expectations for practice long-term efficiency, with BMPs even being sources of pollutants under some conditions and during some time periods. The review of available datasets reveals that current data are limited regarding both short-term and long-term BMP efficiency. Based on this review, this paper provides suggestions regarding needs and opportunities. Existing practice efficiency data need to be compiled. New data on BMP efficiencies that consider important factors, such as maintenance activities, also need to be collected. Then, the existing and new data need to be analyzed. Further research is needed to create a framework, as well as modeling approaches built on the framework, to simulate changes in BMP efficiencies with time. The research community needs to work together in addressing these needs and opportunities, which will assist decision makers in formulating better decisions regarding BMP implementation in watershed management projects.

4.
Artículo en Inglés | MEDLINE | ID: mdl-28481311

RESUMEN

Drought is one of the most widespread extreme climate events with a potential to alter freshwater availability and related ecosystem services. Given the interconnectedness between freshwater availability and many ecosystem services, including food provisioning, it is important to evaluate the drought implications on freshwater provisioning and food provisioning services. Studies about drought implications on streamflow, nutrient loads, and crop yields have been increased and these variables are all process-based model outputs that could represent ecosystem functions that contribute to the ecosystem services. However, few studies evaluate drought effects on ecosystem services such as freshwater and food provisioning and quantify these services using an index-based ecosystem service approach. In this study, the drought implications on freshwater and food provisioning services were evaluated for 14 four-digit HUC (Hydrological Unit Codes) subbasins in the Upper Mississippi River Basin (UMRB), using three drought indices: standardized precipitation index (SPI), standardized soil water content index (SSWI), and standardized streamflow index (SSI). The results showed that the seasonal freshwater provisioning was highly affected by the precipitation deficits and/or surpluses in summer and autumn. A greater importance of hydrological drought than meteorological drought implications on freshwater provisioning was evident for the majority of the subbasins, as evidenced by higher correlations between freshwater provisioning and SSI12 than SPI12. Food provisioning was substantially affected by the precipitation and soil water deficits during summer and early autumn, with relatively less effect observed in winter. A greater importance of agricultural drought effects on food provisioning was evident for most of the subbasins during crop reproductive stages. Results from this study may provide insights to help make effective land management decisions in responding to extreme climate conditions in order to protect and restore freshwater provisioning and food provisioning services in the UMRB.


Asunto(s)
Sequías , Ecosistema , Abastecimiento de Alimentos , Abastecimiento de Agua , Agricultura , Agua Dulce , Humanos , Hidrología , Mississippi , Modelos Teóricos
5.
J Environ Manage ; 177: 331-40, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27111651

RESUMEN

We present a comparison of two ecohydrologic models commonly used for planning land management to assess the production of hydrologic ecosystem services: the Soil and Water Assessment Tool (SWAT) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) annual water yield model. We compare these two models at two distinct sites in the US: the Wildcat Creek Watershed in Indiana and the Upper Upatoi Creek Watershed in Georgia. The InVEST and SWAT models provide similar estimates of the spatial distribution of water yield in Wildcat Creek, but very different estimates of the spatial distribution of water yield in Upper Upatoi Creek. The InVEST model may do a poor job estimating the spatial distribution of water yield in the Upper Upatoi Creek Watershed because baseflow provides a significant portion of the site's total water yield, which means that storage dynamics which are not modeled by InVEST may be important. We also compare the ability of these two models, as well as one newly developed set of ecosystem service indices, to deliver useful guidance for land management decisions focused on providing hydrologic ecosystem services in three particular decision contexts: environmental flow ecosystem services, ecosystem services for potable water supply, and ecosystem services for rainfed irrigation. We present a simple framework for selecting models or indices to evaluate hydrologic ecosystem services as a way to formalize where models deliver useful guidance.


Asunto(s)
Hidrología/métodos , Modelos Teóricos , Recursos Hídricos , Conservación de los Recursos Naturales , Agua Potable , Ecosistema , Georgia , Indiana , Suelo
6.
J Environ Manage ; 150: 21-27, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25460420

RESUMEN

Total Maximum Daily Load is a water quality standard to regulate water quality of streams, rivers and lakes. A wide range of approaches are used currently to develop TMDLs for impaired streams and rivers. Flow and load duration curves (FDC and LDC) have been used in many states to evaluate the relationship between flow and pollutant loading along with other models and approaches. A web-based LDC Tool was developed to facilitate development of FDC and LDC as well as to support other hydrologic analyses. In this study, the FDC and LDC tool was enhanced to allow collection of water quality data via the web and to assist in establishing cost-effective Best Management Practice (BMP) implementations. The enhanced web-based tool provides use of water quality data not only from the US Geological Survey but also from the Water Quality Portal for the U.S. via web access. Moreover, the web-based tool identifies required pollutant reductions to meet standard loads and suggests a BMP scenario based on ability of BMPs to reduce pollutant loads, BMP establishment and maintenance costs. In the study, flow and water quality data were collected via web access to develop LDC and to identify the required reduction. The suggested BMP scenario from the web-based tool was evaluated using the EPA Spreadsheet Tool for the Estimation of Pollutant Load model to attain the required pollutant reduction at least cost.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Calidad del Agua , Abastecimiento de Agua , Conservación de los Recursos Naturales , Humanos , Almacenamiento y Recuperación de la Información , Internet , Estados Unidos
7.
Environ Manage ; 54(4): 795-813, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25073766

RESUMEN

Watershed managers have largely embraced targeting of agricultural conservation as a way to manage strategically non-point source pollution from agricultural lands. However, while targeting of particular watersheds is not uncommon, targeting farms and fields within a specific watershed has lagged. In this work, we employed a qualitative approach, using farmer interviews in west-central Indiana to better understand their views on targeting. Interviews focused on adoption of conservation practices on farmers' lands and identified their views on targeting, disproportionality, and monetary incentives. Results show consistent support for the targeting approach, despite dramatic differences in farmers' views of land stewardship, in their views about disproportionality of water quality impacts, and in their trust in conservation programming. While the theoretical concept of targeting was palatable to all participants, many raised concerns about its practical implementation, pointing to the need for flexibility when applying targeting solutions and revealing misgivings about the government agencies that perform targeting.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales/métodos , Humanos , Indiana , Percepción , Contaminación del Agua/prevención & control
8.
Int J Environ Res Public Health ; 11(3): 2992-3014, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24619160

RESUMEN

Suites of Best Management Practices (BMPs) are usually selected to be economically and environmentally efficient in reducing nonpoint source (NPS) pollutants from agricultural areas in a watershed. The objective of this research was to compare the selection and placement of BMPs in a pasture-dominated watershed using multiobjective optimization and targeting methods. Two objective functions were used in the optimization process, which minimize pollutant losses and the BMP placement areas. The optimization tool was an integration of a multi-objective genetic algorithm (GA) and a watershed model (Soil and Water Assessment Tool-SWAT). For the targeting method, an optimum BMP option was implemented in critical areas in the watershed that contribute the greatest pollutant losses. A total of 171 BMP combinations, which consist of grazing management, vegetated filter strips (VFS), and poultry litter applications were considered. The results showed that the optimization is less effective when vegetated filter strips (VFS) are not considered, and it requires much longer computation times than the targeting method to search for optimum BMPs. Although the targeting method is effective in selecting and placing an optimum BMP, larger areas are needed for BMP implementation to achieve the same pollutant reductions as the optimization method.


Asunto(s)
Contaminación del Agua/prevención & control , Calidad del Agua/normas , Algoritmos , Benchmarking , Abastecimiento de Agua
9.
J Environ Manage ; 119: 151-61, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23474339

RESUMEN

The impacts of urbanization on hydrology and water quality can be minimized with the use of low impact development (LID) practices in urban areas. This study assessed the performance of rain barrel/cistern and porous pavement as retrofitting technologies in two urbanized watersheds of 70 and 40 km(2) near Indianapolis, Indiana. Six scenarios consisting of the watershed existing condition, 25% and 50% implementation of rain barrel/cistern and porous pavement, and 25% rain barrel/cistern combined with 25% porous pavement were evaluated using a proposed LID modeling framework and the Long-Term Hydrologic Impact Assessment (L-THIA)-LID model. The model was calibrated for annual runoff from 1991 to 2000, and validated from 2001 to 2010 for the two watersheds. For the calibration period, R(2) and NSE values were greater than 0.60 and 0.50 for annual runoff and streamflow. Baseflow was not calibrated in this study. During the validation period, R(2) and NSE values were greater than 0.50 for runoff and streamflow, and 0.30 for baseflow in the two watersheds. The various application levels of barrel/cistern and porous pavement resulted in 2-12% reduction in runoff and pollutant loads for the two watersheds. Baseflow loads slightly increased with increase in baseflow by more than 1%. However, reduction in runoff led to reduction in total streamflow and associated pollutant loads by 1-9% in the watersheds. The results also indicate that the application of 50% rain barrel/cistern, 50% porous pavement and 25% rain barrel/cistern combined with 25% porous pavement are good retrofitting options in these watersheds. The L-THIA-LID model can be used to inform management and decision-making for implementation of LID practices at the watershed scale.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Lluvia , Movimientos del Agua , Recursos Hídricos , Calibración , Ciudades , Materiales de Construcción , Indiana , Modelos Teóricos , Porosidad , Transportes
10.
Environ Sci Technol ; 47(4): 1784-91, 2013 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-23339778

RESUMEN

There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result of using corn stover to satisfy the RFS.


Asunto(s)
Biocombustibles , Efecto Invernadero , Modelos Económicos , Calidad del Agua , Zea mays , Fertilizantes , Gases/análisis , Abastecimiento de Agua
11.
Int J Environ Res Public Health ; 9(10): 3654-84, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23202767

RESUMEN

Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water quality in a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using the Soil and Water Assessment Tool (SWAT). These selected BMPs were further examined with future climate conditions (2010–2069) downscaled from three general circulation models (GCMs) for understanding how climate change may impact BMP performance. Simulation results indicate that total nitrogen (TN) and total phosphorus (TP) losses increase with increasing litter application rates. Alum-treated litter applications resulted in greater TN losses, and fewer TP losses than the losses from untreated poultry litter applications. For the same litter application rates, sediment and TP losses are greater for summer applications than fall and spring applications, while TN losses are greater for fall applications. Overgrazing management resulted in the greatest sediment and phosphorus losses, and VFS is the most influential management practice in reducing pollutant losses. Simulations also indicate that climate change impacts TSS losses the most, resulting in a larger magnitude of TSS losses. However, the performance of selected BMPs in reducing TN and TP losses was more stable in future climate change conditions than in the BMP performance in the historical climate condition. We recommend that selection of BMPs to reduce TSS losses should be a priority concern when multiple uses of BMPs that benefit nutrient reductions are considered in a watershed. Therefore, the BMP combination of spring litter application, optimum grazing management and filter strip with a VFS ratio of 42 could be a promising alternative for use in mitigating future climate change.


Asunto(s)
Agricultura , Cambio Climático , Modelos Teóricos , Contaminación del Agua/prevención & control , Arkansas , Lagos , Nitrógeno/análisis , Oklahoma , Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
12.
J Environ Manage ; 97: 46-55, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-22325582

RESUMEN

In many states of the US, the total maximum daily load program has been widely developed for watershed water quality restoration and management. However, the total maximum daily load is often represented as an average daily pollutant load based on average long-term flow conditions, and as such, it does not adequately describe the problems they aim to address. Without an adequate characterization of water quality problems, appropriate solutions cannot be identified and implemented. The total maximum daily load approach should consider adequate water quality characterizations based on overall flow conditions rather than on a single flow event such as average daily flow. The Load Duration Curve, which provides opportunities for enhanced pollutant source and best management practice targeting both in the total maximum daily load development and in water quality restoration efforts, has been used for the determination of appropriate total maximum daily load targets. However, at least 30 min to an hour is needed for unskilled people based on our experiences to generate the Load Duration Curve using a desktop-based spreadsheet computer program. Therefore, in this study, the Web-based Load Duration Curve system (https://engineering.purdue.edu/∼ldc/) was developed and applied to a study watershed for an analysis of the total maximum daily load and water quality characteristics in the watershed. This system provides diverse options for Flow Duration Curve and Load Duration Curve analysis of a watershed of interest in a brief time. The Web-based Load Duration Curve system is useful for characterizing the problem according to flow regimes, and for providing a visual representation that enables an easy understanding of the problem and the total maximum daily load targets. In addition, this system will be able to help researchers identify appropriate best management practices within watersheds.


Asunto(s)
Programas Informáticos , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , Agua/química , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Internet , República de Corea , Estados Unidos , Movimientos del Agua
13.
Environ Manage ; 48(3): 448-61, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21667317

RESUMEN

Nonpoint source (NPS) pollutants such as phosphorus, nitrogen, sediment, and pesticides are the foremost sources of water contamination in many of the water bodies in the Midwestern agricultural watersheds. This problem is expected to increase in the future with the increasing demand to provide corn as grain or stover for biofuel production. Best management practices (BMPs) have been proven to effectively reduce the NPS pollutant loads from agricultural areas. However, in a watershed with multiple farms and multiple BMPs feasible for implementation, it becomes a daunting task to choose a right combination of BMPs that provide maximum pollution reduction for least implementation costs. Multi-objective algorithms capable of searching from a large number of solutions are required to meet the given watershed management objectives. Genetic algorithms have been the most popular optimization algorithms for the BMP selection and placement. However, previous BMP optimization models did not study pesticide which is very commonly used in corn areas. Also, with corn stover being projected as a viable alternative for biofuel production there might be unintended consequences of the reduced residue in the corn fields on water quality. Therefore, there is a need to study the impact of different levels of residue management in combination with other BMPs at a watershed scale. In this research the following BMPs were selected for placement in the watershed: (a) residue management, (b) filter strips, (c) parallel terraces, (d) contour farming, and (e) tillage. We present a novel method of combing different NPS pollutants into a single objective function, which, along with the net costs, were used as the two objective functions during optimization. In this study we used BMP tool, a database that contains the pollution reduction and cost information of different BMPs under consideration which provides pollutant loads during optimization. The BMP optimization was performed using a NSGA-II based search method. The model was tested for the selection and placement of BMPs in Wildcat Creek Watershed, a corn dominated watershed located in northcentral Indiana, to reduce nitrogen, phosphorus, sediment, and pesticide losses from the watershed. The Pareto optimal fronts (plotted as spider plots) generated between the optimized objective functions can be used to make management decisions to achieve desired water quality goals with minimum BMP implementation and maintenance cost for the watershed. Also these solutions were geographically mapped to show the locations where various BMPs should be implemented. The solutions with larger pollution reduction consisted of buffer filter strips that lead to larger pollution reduction with greater costs compared to other alternatives.


Asunto(s)
Agricultura/métodos , Monitoreo del Ambiente , Contaminación del Agua/análisis , Contaminación del Agua/prevención & control , Agricultura/economía , Algoritmos , Biocombustibles/provisión & distribución , Bases de Datos Factuales , Sedimentos Geológicos/análisis , Indiana , Modelos Biológicos , Nitrógeno/análisis , Plaguicidas/análisis , Fósforo/análisis , Contaminación del Agua/economía , Zea mays/crecimiento & desarrollo , Zea mays/fisiología
14.
Appl Spectrosc ; 62(9): 1013-21, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18801241

RESUMEN

Water quality estimation in fresh and marine water systems with in situ above-water spectroscopy requires measurement of the volume reflectance (rhov) of water bodies. However, the above-water radiometric measurements include surface reflection (Lr) as a significant component along with volume reflection. The Lr carries no information on water quality, and hence it is considered as a major source of error in in situ above-water spectroscopy. Currently, there are no methods to directly measure Lr. The common method to estimate Lr assumes a constant water surface reflectance (rhos) of 2%, and then subtracts the Lr thus calculated from the above-water radiance measurements to obtain the volume reflection (Lv). The problem with this method is that the amount of rhos varies with environmental conditions. Therefore, a methodology was developed in this study for direct measurement of water volume reflectance above water at nadir view geometry. Other objectives of this study were to analyze the contribution of Lr to the total water reflectance under various environmental conditions in a controlled setup and to develop an artificial neural network (ANN) model to estimate rhos from environmental conditions. The results showed that Lr contributed 20-54% of total upwelling radiance from water at nadir. The rhos was highly variable with environmental conditions. Using sun altitude, wind speed, diffuse lighting, and wavelength as inputs, the ANN model was able to accurately simulate rhos, with a low root mean square error of 0.003. A sensitivity analysis with the ANN model indicated that sun altitude and diffuse light had the highest influence on rhos, contributing to over 82% of predictability of the ANN model. Therefore, the ANN modeling framework can be an accurate tool for estimating surface reflectance in applications that require volume reflectance of water.


Asunto(s)
Algoritmos , Artefactos , Fotometría/métodos , Espectroscopía Infrarroja Corta/métodos , Agua/análisis , Agua/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Sci Total Environ ; 347(1-3): 187-207, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16084978

RESUMEN

Total mercury (THg) and mono-methylmercury (MeHg) levels in water, sediment, and largemouth bass (LMB) (Micropterus salmoides) were investigated at 52 sites draining contrasting land use/land cover and habitat types within the Mobile Alabama River Basin (MARB). Aqueous THg was positively associated with iron-rich suspended particles and highest in catchments impacted by agriculture. Sediment THg was positively associated with sediment organic mater and iron content, with the highest levels observed in smaller catchments influenced by wetlands, followed by those impacted by agriculture or mixed forest, agriculture, and wetlands. The lowest sediment THg levels were observed in main river channels, except for reaches impacted by coal mining. Sediment MeHg levels were a positive function of sediment THg and organic matter and aqueous nutrient levels. The highest levels occurred in agricultural catchments and those impacted by elevated sulfate levels associated with coal mining. Aqueous MeHg concentrations in main river channels were as high as those in smaller catchments impacted by agriculture or wetlands, suggesting these areas were sources to rivers. Elevated Hg levels in some LMB were observed across all types of land use and land cover, but factors such as shallow water depth, larger wetland catchment surface area, low aqueous potassium levels, and higher Chl a concentrations were associated with higher Hg burdens, particularly in the Coastal Plain province. It is suggested that the observed large variability in LMB Hg burdens is linked to fish displacement by anglers, differences in food web structure, and sediment biogeochemistry, with surficial sediment iron oxides buffering the flux of MeHg from sediments to deeper water pelagic food webs.


Asunto(s)
Lubina/metabolismo , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua , Alabama , Animales , Monitoreo del Ambiente , Sedimentos Geológicos , Mercurio/metabolismo , Compuestos de Metilmercurio/metabolismo , Ríos , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...