Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 595(5): 595-603, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33423298

RESUMEN

We have previously demonstrated that Fanconi anemia (FA) proteins work in concert with other FA and non-FA proteins to mediate stalled replication fork restart. Previous studies suggest a connection between the FA protein FANCD2 and the non-FA protein mechanistic target of rapamycin (mTOR). A recent study showed that mTOR is involved in actin-dependent DNA replication fork restart, suggesting possible roles in the FA DNA repair pathway. In this study, we demonstrate that during replication stress mTOR interacts and cooperates with FANCD2 to provide cellular stability, mediate stalled replication fork restart, and prevent nucleolytic degradation of the nascent DNA strands. Taken together, this study unravels a novel functional cross-talk between two important mechanisms: mTOR and FA DNA repair pathways that ensure genomic stability.


Asunto(s)
Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Fibroblastos/metabolismo , Serina-Treonina Quinasas TOR/genética , Afidicolina/farmacología , Supervivencia Celular/efectos de los fármacos , ADN/genética , ADN/metabolismo , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Genoma Humano , Inestabilidad Genómica , Humanos , Hidroxiurea/farmacología , Mitomicina/farmacología , Cultivo Primario de Células , Unión Proteica/efectos de los fármacos , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
2.
Nucleic Acids Res ; 45(5): 2558-2570, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-27956499

RESUMEN

The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. Replication stress or DNA damage triggers fork stalling and checkpoint signaling to activate repair pathways. Recovery from checkpoint activation is critical for cell survival following DNA damage. Recovery from the S-phase checkpoint includes inactivation of checkpoint signaling and restart of stalled replication forks. Previous studies demonstrated that degradation of Mrc1, the Saccharomyces cerevisiae ortholog of human Claspin, is facilitated by the SCFDia2 ubiquitin ligase and is important for cell cycle re-entry after DNA damage-induced S-phase checkpoint activation. Here, we show that degradation of Mrc1 facilitated by the SCFDia2 complex is critical to restart stalled replication forks during checkpoint recovery. Using DNA fiber analysis, we showed that Dia2 functions with the Sgs1 and Mph1 helicases (orthologs of human BLM and FANCM, respectively) in the recombination-mediated fork restart pathway. In addition, Dia2 physically interacts with Sgs1 upon checkpoint activation. Importantly, failure to target Mrc1 for degradation during recovery inhibits Sgs1 chromatin association, but this can be alleviated by induced proteolysis of Mrc1 after checkpoint activation. Together, these studies provide new mechanistic insights into how cells recover from activation of the S-phase checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Proteínas F-Box/metabolismo , RecQ Helicasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Puntos de Control del Ciclo Celular , Cromatina/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , Proteínas F-Box/química , Proteínas F-Box/fisiología , Dominios Proteicos , RecQ Helicasas/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología
3.
Genes (Basel) ; 7(11)2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27801838

RESUMEN

Checkpoint recovery is integral to a successful checkpoint response. Checkpoint pathways monitor progress during cell division so that in the event of an error, the checkpoint is activated to block the cell cycle and activate repair pathways. Intrinsic to this process is that once repair has been achieved, the checkpoint signaling pathway is inactivated and cell cycle progression resumes. We use the term "checkpoint recovery" to describe the pathways responsible for the inactivation of checkpoint signaling and cell cycle re-entry after the initial stress has been alleviated. The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. When replication stress is encountered, replication forks are stalled, and the checkpoint signaling pathway is activated. Central to recovery from the S-phase checkpoint is the restart of stalled replication forks. If checkpoint recovery fails, stalled forks may become unstable and lead to DNA breaks or unusual DNA structures that are difficult to resolve, causing genomic instability. Alternatively, if cell cycle resumption mechanisms become uncoupled from checkpoint inactivation, cells with under-replicated DNA might proceed through the cell cycle, also diminishing genomic stability. In this review, we discuss the molecular mechanisms that contribute to inactivation of the S-phase checkpoint signaling pathway and the restart of replication forks during recovery from replication stress.

4.
Cell Cycle ; 14(3): 342-53, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25659033

RESUMEN

Fanconi Anemia (FA) is an inherited multi-gene cancer predisposition syndrome that is characterized on the cellular level by a hypersensitivity to DNA interstrand crosslinks (ICLs). To repair these lesions, the FA pathway proteins are thought to act in a linear hierarchy: Following ICL detection, an upstream FA core complex monoubiquitinates the central FA pathway members FANCD2 and FANCI, followed by their recruitment to chromatin. Chromatin-bound monoubiquitinated FANCD2 and FANCI subsequently coordinate DNA repair factors including the downstream FA pathway members FANCJ and FANCD1/BRCA2 to repair the DNA ICL. Importantly, we recently showed that FANCD2 has additional independent roles: it binds chromatin and acts in concert with the BLM helicase complex to promote the restart of aphidicolin (APH)-stalled replication forks, while suppressing the firing of new replication origins. Here, we show that FANCD2 fulfills these roles independently of the FA core complex-mediated monoubiquitination step. Following APH treatment, nonubiquitinated FANCD2 accumulates on chromatin, recruits the BLM complex, and promotes robust replication fork recovery regardless of the absence or presence of a functional FA core complex. In contrast, the downstream FA pathway members FANCJ and BRCA2 share FANCD2's role in replication fork restart and the suppression of new origin firing. Our results support a non-linear FA pathway model at stalled replication forks, where the nonubiquitinated FANCD2 isoform - in concert with FANCJ and BRCA2 - fulfills a specific function in promoting efficient replication fork recovery independently of the FA core complex.


Asunto(s)
Proteína BRCA2/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Complejos Multiproteicos/metabolismo , Afidicolina/farmacología , Línea Celular , Cromatina/metabolismo , Replicación del ADN/efectos de los fármacos , Humanos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
5.
Mol Cell Biol ; 34(21): 3939-54, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25135477

RESUMEN

Fanconi anemia (FA) is a cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand cross-links (ICLs). Within the FA pathway, an upstream core complex monoubiquitinates and recruits the FANCD2 protein to ICLs on chromatin. Ensuing DNA repair involves the Fanconi-associated nuclease 1 (FAN1), which interacts selectively with monoubiquitinated FANCD2 (FANCD2(Ub)) at ICLs. Importantly, FANCD2 has additional independent functions: it binds chromatin and coordinates the restart of aphidicolin (APH)-stalled replication forks in concert with the BLM helicase, while protecting forks from nucleolytic degradation by MRE11. We identified FAN1 as a new crucial replication fork recovery factor. FAN1 joins the BLM-FANCD2 complex following APH-mediated fork stalling in a manner dependent on MRE11 and FANCD2, followed by FAN1 nuclease-mediated fork restart. Surprisingly, APH-induced activation and chromatin recruitment of FAN1 occur independently of the FA core complex or the FAN1 UBZ domain, indicating that the FANCD2(Ub) isoform is dispensable for functional FANCD2-FAN1 cross talk during stalled fork recovery. In the absence of FANCD2, MRE11 exonuclease-promoted access of FAN1 to stalled forks results in severe FAN1-mediated nucleolytic degradation of nascent DNA strands. Thus, FAN1 nuclease activity at stalled replication forks requires tight regulation: too little inhibits fork restart, whereas too much causes fork degradation.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , RecQ Helicasas/metabolismo , Afidicolina/farmacología , Dominio Catalítico , Línea Celular , Núcleo Celular/metabolismo , Cromatina/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Regulación de la Expresión Génica , Humanos , Proteína Homóloga de MRE11 , Enzimas Multifuncionales , Ubiquitinación
6.
Nucleic Acids Res ; 41(13): 6444-59, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23658231

RESUMEN

Fanconi Anemia (FA) and Bloom Syndrome share overlapping phenotypes including spontaneous chromosomal abnormalities and increased cancer predisposition. The FA protein pathway comprises an upstream core complex that mediates recruitment of two central players, FANCD2 and FANCI, to sites of stalled replication forks. Successful fork recovery depends on the Bloom's helicase BLM that participates in a larger protein complex ('BLMcx') containing topoisomerase III alpha, RMI1, RMI2 and replication protein A. We show that FANCD2 is an essential regulator of BLMcx functions: it maintains BLM protein stability and is crucial for complete BLMcx assembly; moreover, it recruits BLMcx to replicating chromatin during normal S-phase and mediates phosphorylation of BLMcx members in response to DNA damage. During replication stress, FANCD2 and BLM cooperate to promote restart of stalled replication forks while suppressing firing of new replication origins. In contrast, FANCI is dispensable for FANCD2-dependent BLMcx regulation, demonstrating functional separation of FANCD2 from FANCI.


Asunto(s)
Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , RecQ Helicasas/metabolismo , Animales , Evolución Biológica , Cromatina/metabolismo , Daño del ADN , Humanos , Fosforilación , Proteína de Replicación A/metabolismo , Ubiquitinación , Xenopus laevis
7.
Nucleic Acids Res ; 40(17): 8425-39, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22753026

RESUMEN

Fanconi anemia (FA) pathway members, FANCD2 and FANCI, contribute to the repair of replication-stalling DNA lesions. FA pathway activation relies on phosphorylation of FANCI by the ataxia telangiectasia and Rad3-related (ATR) kinase, followed by monoubiquitination of FANCD2 and FANCI by the FA core complex. FANCD2 and FANCI are thought to form a functional heterodimer during DNA repair, but it is unclear how dimer formation is regulated or what the functions of the FANCD2-FANCI complex versus the monomeric proteins are. We show that the FANCD2-FANCI complex forms independently of ATR and FA core complex, and represents the inactive form of both proteins. DNA damage-induced FA pathway activation triggers dissociation of FANCD2 from FANCI. Dissociation coincides with FANCD2 monoubiquitination, which significantly precedes monoubiquitination of FANCI; moreover, monoubiquitination responses of FANCD2 and FANCI exhibit distinct DNA substrate specificities. A phosphodead FANCI mutant fails to dissociate from FANCD2, whereas phosphomimetic FANCI cannot interact with FANCD2, indicating that FANCI phosphorylation is the molecular trigger for FANCD2-FANCI dissociation. Following dissociation, FANCD2 binds replicating chromatin prior to-and independently of-FANCI. Moreover, the concentration of chromatin-bound FANCD2 exceeds that of FANCI throughout replication. Our results suggest that FANCD2 and FANCI function separately at consecutive steps during DNA repair in S-phase.


Asunto(s)
Reparación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Fase S/genética , Proteínas de Xenopus/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular , Cromatina/metabolismo , Daño del ADN , Fosforilación , Proteínas Serina-Treonina Quinasas , Ubiquitinación , Xenopus laevis
8.
Shock ; 33(5): 493-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19823115

RESUMEN

Sepsis and/or systemic inflammatory response syndrome are leading causes of death in intensive care unit patients. NO is a critical player in the pathogenesis of bacterial sepsis. Several studies demonstrate elevation of iNOS in LPS-induced acute inflammatory responses and mortality; however, the effectiveness of its therapeutic suppression in systemic inflammation is largely controversial. Earlier, we have reported that DNAzymes specific to iNOS mRNA efficiently suppress iNOS expression in LPS-stimulated J774 murine macrophages. In the present study, we explored the effects of two of these DNAzymes in BALB/c mice model of LPS-induced lethal systemic inflammation. Experimental animal groups receiving previous injections of iNOS-specific DNAzyme (100 microg, i.p.) showed significantly reduced mortality. Total cell counts of peritoneal lavage and histopathological studies of tissues demonstrated substantial reduction in the leukocytic infiltration and edema in DNAzyme-treated mice. In addition, DNAzyme-injected animals displayed significantly decreased IL-12 serum level, whereas the levels of IL-1[beta], IFN-[gamma], and TNF-[alpha] also declined to a great extent. DNAzyme treatment resulted in significantly reduced NO levels in serum and peritoneal lavage, confirming functional suppression of iNOS gene in LPS-injected mice. These DNAzymes were also able to limit excessive NO production by cytokine and LPS co-challenges in cultured peritoneal macrophages from DNAzyme-treated mice. Estimation of iNOS mRNA and protein expression in the peritoneal macrophages of DNAzyme-administered animals further confirmed the iNOS gene knockdown. All these results indicated that iNOS-specific DNAzymes reduce inflammatory responses and enhance survival in murine model of LPS-induced lethal systemic inflammation.


Asunto(s)
ADN Catalítico/uso terapéutico , ADN de Cadena Simple/uso terapéutico , Inflamación/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Óxido Nítrico Sintasa de Tipo II/genética , Animales , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Inflamación/inducido químicamente , Inflamación/mortalidad , Inflamación/patología , Mediadores de Inflamación/antagonistas & inhibidores , Interleucina-12/metabolismo , Macrófagos Peritoneales , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/biosíntesis , Óxido Nítrico/sangre
9.
FEBS Lett ; 583(17): 2968-74, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19683526

RESUMEN

Persistently elevated level of TNF-alpha has been implicated in several inflammatory disorders, however, its autocrine production through TNF-alpha receptors signaling is poorly understood. Here we report that simultaneous silencing of TNF-receptors, R1 and R2 by DNAzyme or siRNA suppressed TNF-alpha expression more efficiently than silencing them individually in lipopolysaccharides (LPS) stimulated THP-1 macrophages. Co-silencing of TNF-receptors also inhibited TNF-alpha induced NF-kappaB activation to a higher extent. It was further observed that NF-kappaB inhibitor but not c-Jun N-terminal kinase inhibitor (SP600125) suppressed TNF-alpha expression. All these results suggest that TNF-alpha expression is regulated by synergistic signaling of TNF receptors through downstream NF-kappaB activation.


Asunto(s)
Macrófagos/metabolismo , FN-kappa B/metabolismo , Receptores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/metabolismo , Antracenos/metabolismo , Células Cultivadas , Inhibidores Enzimáticos/metabolismo , Silenciador del Gen , Humanos , Lipopolisacáridos/metabolismo , Macrófagos/citología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/genética
10.
J Gastroenterol Hepatol ; 24(5): 872-8, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19220662

RESUMEN

BACKGROUND AND AIMS: The 9600 nt hepatitis C virus (HCV) genomic RNA has only one internal ribosome entry site (IRES) for translation to a single polyprotein. In search of nucleic acid-based antiviral agents, two 10-23 DNAzymes were designed to cleave the RNA in IRES and RNA dependent RNA polymerase (RDRP/NS5B) regions to prevent translation and replication of HCV RNA. METHODS: In vitro cleavage of HCV RNA by IRES specific DNAzyme, CDz and NS5B specific DNAzyme, NDz was carried out using HCV genomic RNA and in vitro synthesized runoff transcripts of core and NS5B genes. Cleavage of core and NS5B mRNAs by DNAzyme (Dz) in HepG2 cells was assessed by reverse transcription polymerase chain reaction (RT-PCR) using RNA from cells co-transfected with cloned core or NS5B gene and its respective DNAzyme. Suppression of core or NS5B protein expression due to mRNA cleavage by Dz in co-transfected cells was determined by Western blot analysis and fluorescence intensity of fluorescent-tagged expressed protein. Reduction of NS5B protein activity in NDz co-transfected cells was determined by enzymatic assays. RESULTS: The designed CDz and NDz cleaved HCV genomic RNA and their respective in vitro generated transcripts. Both mRNA and protein expressions of core or NS5B from their cloned genes reduced substantially when co-transfected with respective Dz. Reduction of RDRP expression by NDz was accompanied with its reduced enzyme activity. Increased RNA cleavage, inhibition of protein expression, and reduction of RDRP activity were observed on increasing Dz concentration. CONCLUSION: Core and NS5B targeted DNAzymes can be used in controlling the replication of HCV RNA.


Asunto(s)
Antivirales/farmacología , ADN Catalítico/farmacología , ADN de Cadena Simple/farmacología , Hepacivirus/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Viral/biosíntesis , Proteínas del Núcleo Viral/biosíntesis , Proteínas no Estructurales Virales/biosíntesis , Regiones no Traducidas 5' , Antivirales/metabolismo , Línea Celular Tumoral , ADN Catalítico/genética , ADN Catalítico/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Regulación Viral de la Expresión Génica/efectos de los fármacos , Hepacivirus/genética , Hepacivirus/crecimiento & desarrollo , Humanos , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Recombinantes de Fusión/biosíntesis , Transfección , Proteínas del Núcleo Viral/genética , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
11.
Virus Res ; 135(1): 197-201, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18353480

RESUMEN

DNAzyme is known to selectively cleave RNA at predetermined site. Transfection of Autographa californica nucleopolyhedrovirus (AcNPV) infected Sf9 cells with serine/threonine kinase (pk1) mRNA specific DNAzymes, DZ1 and DZ2 to cleave the viral coded (pk1) mRNA in between 87th and 88th, and 250th and 251st nucleotide, respectively inhibited the pk1 mRNA and its protein expressions. Interestingly, polh mRNA and protein expressions were also inhibited by these DNAzymes despite their inability to cleave polh mRNA. The polyhedrin promoter driven green fluorescent protein (GFP) mRNA and protein expressions were also inhibited by these pk1 specific DZs. Surprisingly the extents of inhibition of polyhedrin and GFP at different concentrations of both DZs were higher than that of pk1 mRNA and protein expressions. These results suggested that pk1 regulates polyhedrin promoter driven transcription of AcNPV, and the effect of one gene expression on that of other can be studied by DNAzyme knockdown.


Asunto(s)
ADN Catalítico/farmacología , Regulación hacia Abajo , Expresión Génica/efectos de los fármacos , Nucleopoliedrovirus/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Proteínas de la Matriz de Cuerpos de Oclusión , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Spodoptera , Transcripción Genética/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo
12.
FEBS Lett ; 580(8): 2046-52, 2006 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-16546178

RESUMEN

iNOS mRNA of J774 murine macrophage cells was cleaved by 10-23 DNAzymes. DNAzyme target site I or translation initiation site and site II have computer predicted (MFOLD) secondary structures but site III has no secondary structure. All the three DNAzymes cleaved the short transcripts generated from cloned DNA almost with equal efficiency while cleavage efficiency is higher at site III than the other two sites on isolated iNOS mRNA. Interestingly, at intracellular level, DNAzyme targeted at translation initiation codon (site I) having secondary structure cleaved iNOS mRNA, and suppressed its activity and protein expression more efficiently than that targeted at sites II and III.


Asunto(s)
ADN Catalítico/farmacología , ADN de Cadena Simple/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Óxido Nítrico Sintasa de Tipo II/genética , Animales , Células Cultivadas , Etilenodiaminas , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , ARN Mensajero/genética , Sulfanilamidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...