Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Otolaryngol Head Neck Surg ; 76(2): 2127-2130, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566711

RESUMEN

Intraorally, cysticercosis is regarded as uncommon and a diagnostic challenge. Here, we report a diagnostic conundrum of an unusual case of innocuous appearing lesion on the tongue presenting as moderately tender swelling finally diagnosed as lingual cysticercosis, based on USG (Ultrasound), CT (Computed Tomography) findings and characteristic histopathologic features.

2.
Z Naturforsch C J Biosci ; 79(1-2): 1-12, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156366

RESUMEN

Boceprevir drug is a ketoamide serine protease inhibitor with a linear peptidomimetic structure that exhibits inhibition activity against 2019-nCoV main protease. This paper reports electronic properties of boceprevir and its molecular docking as well as molecular dynamics simulation analysis with protein receptor. For this, the equilibrium structure of boceprevir has been obtained by DFT at B3LYP and ωB97XD levels with 6-311+G(d,p) basis set in gas and water mediums. HOMO-LUMO and absorption spectrum analysis have been used to evaluate the boceprevir's toxicity and photosensitivity, respectively. Molecular docking simulation has been performed to test the binding affinity of boceprevir with 2019-nCoV MPRO; which rendered a variety of desirable binding locations between the ligand and target protein's residue positions. The optimum binding location has been considered for molecular dynamics simulation. The findings have been addressed to clarify the boceprevir drug efficacy against the 2019-nCoV MPRO.


Asunto(s)
COVID-19 , Prolina/análogos & derivados , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología
3.
Environ Sci Pollut Res Int ; 30(44): 98747-98759, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36656480

RESUMEN

The power conversion efficiency of all-inorganic Sb2S3-on-Si two-terminal (2-T) monolithically integrated and four-terminal (4-T) mechanically stacked tandem solar cells are investigated. A one-dimensional solar cell capacitance simulator (SCAPS-1D) has been used to simulate the stand-alone antimony trisulfide (Sb2S3) top sub-cell, silicon (Si) bottom sub-cell, 2-T monolithic, and 4-T mechanically stacked tandem solar cells. The stand-alone sub-cells are optimized by extensive studies, including interface defects density, bulk defects density, absorber layer thickness, and series resistance. The power conversion efficiency (PCE) of simulated stand-alone sub-cells is compared and verified with the existing literature. A current matching condition is established to characterize the 2-T monolithic Sb2S3-on-Si tandem cell. A filtered spectrum has been utilized for bottom sub-cell measurement in the tandem solar cells. The best-simulated PCE of Sb2S3-on-Si 2-T monolithic and 4-T tandem cells is 30.22% and 29.30%, respectively. The simulation results presented in this paper open an opportunity for the scientific community to consider Sb2S3 as a potential top sub-cell material in Sb2S3-on-Si tandem solar cells with high PCE.


Asunto(s)
Modelos Teóricos , Silicio , Simulación por Computador , Capacidad Eléctrica
4.
Environ Sci Pollut Res Int ; 30(44): 98718-98731, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36434460

RESUMEN

A new hetero-structure of n-TiO2/p-WS2/p-Cu2O is proposed as a potential candidate for solar energy generation using tungsten disulfide (WS2) as an absorber layer. The proposed device performance is simulated by employing a one-dimensional solar cell capacitance simulator (SCAPS-1D). The numerical simulation studies compared the performances of n-TiO2/p-Cu2O, n-TiO2/p-WS2/p-Cu2O, and n-TiO2/p-WS2 hetero-structures based on various physical parameters like interface defects density, bulk defects density, absorber layer thickness, series resistance, shunt resistance, and operating temperature. In our simulation investigations, we found that interface defects pose a formidable impact on heterojunction devices. Interface defects closer to the front surface severely deteriorate the performances than the back surface. The bandgap of the absorber layer influences the performances of the solar cells. A closer comparison between n-TiO2/p-Cu2O and n-TiO2/p-WS2 heterojunction solar cells (HJSCs) revealed that the latter (n-TiO2/p-WS2) has nearly 182% better performance than the former (n-TiO2/p-Cu2O) devices. Additionally, the performance of the n-TiO2/p-WS2 solar cell is further boosted by ~ 139% in the presence of a hole transport layer of p-Cu2O. The best-simulated efficiency of the proposed new hetero-structure (n-TiO2/p-WS2/p-Cu2O) solar cell is 28.86%. Moreover, these optimized physical parameters may shed light on "easy to apply" new path for fabrication of a non-toxic, environment-friendly, and highly efficient novel thin-film heterojunction (n-TiO2/p-WS2/p-Cu2O) solar cell.


Asunto(s)
Energía Solar , Simulación por Computador , Capacidad Eléctrica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...