Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(51): 6504-6507, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38833216

RESUMEN

Chemoselective monoborylation of methane in high yield is a grand challenge. We have developed a metal-organic framework confined pyridylimine-iridium hydride catalyst, which is efficient in methane C-H borylation using bis(pinacolato)diboron to afford methyl boronic acid pinacol ester in 98% GC-yield at 130 °C with a TON of 196. Mechanistic investigation suggests the oxidative addition of methane to IrIII(Bpin)2(H) species to form IrV(Bpin)2(CH3)(H)2 as the turnover limiting step.

2.
Inorg Chem ; 63(25): 11907-11916, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38850244

RESUMEN

Direct hydroxylation of benzene to phenol is more appealing in the industry for the economic and environmentally friendly phenol synthesis than the conventional cumene process. We have developed a UiO-metal-organic framework (MOF)-supported mono bipyridyl-Iron(II) hydroxyl catalyst [bpy-UiO-Fe(OH)2] for the selective benzene hydroxylation into phenol using H2O2 as the oxidant. The heterogeneous bpy-UiO-Fe(OH)2 catalyst showed high activity and remarkable phenol selectivity of 99%, giving the phenol mass-specific activity up to 1261 mmolPhOHgFe-1 h-1 at 60 °C. Bpy-UiO-Fe(OH)2 is significantly more active and selective than its homogeneous counterpart, bipyridine-Fe(OH)2. This enhanced catalytic activity of bpy-UiO-Fe(OH)2 over its homogeneous control is attributed to the active site isolation of the bpy-Fe(OH)2 moiety by the solid MOF that prevents intermolecular decomposition. Moreover, the exceptional selectivity of bpy-UiO-Fe(OH)2 in benzene to phenol conversion is originated via shape-selective catalysis, where the confined reaction space within the porous UiO-MOF prevents the formation of larger overoxidized products such as hydroquinone or benzoquinone, leading to the formation of only smaller-sized phenol after monohydroxylation of benzene. Spectroscopic and controlled experiments and theoretical calculations elucidated the reaction pathway, in which the in situ generated •OH radical mediated by bpy-UiO-FeII(OH)2 is the key species for benzene hydroxylation. This work underscores the significance of MOF-supported earth-abundant metal catalysts for sustainable production of fine chemicals.

3.
Chempluschem ; 89(4): e202300520, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37930953

RESUMEN

Reducing nitro compounds to amines is a fundamental reaction in producing valuable chemicals in industry. Herein, the synthesis and characterization of a zirconium metal-organic framework-supported salicylaldimine-cobalt(II) chloride (salim-UiO-CoCl) and its application in catalytic reduction of nitro compounds are reported. Salim-UiO-Co displayed excellent catalytic activity in chemoselective reduction of aromatic and aliphatic nitro compounds to the corresponding amines in the presence of phenylsilane as a reducing agent under mild reaction conditions. Salim-UiO-Co catalyzed nitro reduction had a broad substrate scope with excellent tolerance to diverse functional groups, including easily reducible ones such as aldehyde, keto, nitrile, and alkene. Salim-UiO-Co MOF catalyst could be recycled and reused at least 14 times without noticeable losing activity and selectivity. Density functional theory (DFT) studies along with spectroscopic analysis were employed to get into a comprehensive investigation of the reaction mechanism. This work underscores the significance of MOF-supported single-site base-metal catalysts for the sustainable and cost-effective synthesis of chemical feedstocks and fine chemicals.

4.
JACS Au ; 3(12): 3473-3484, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38155638

RESUMEN

Upcycling nonbiodegradable plastics such as polyolefins is paramount due to their ever-increasing demand and landfills after usage. Catalytic hydrogenolysis is highly appealing to convert polyolefins into targeted value-added products under mild reaction conditions compared with other methods, such as high-temperature incineration and pyrolysis. We have developed three isoreticular zirconium UiO-metal-organic frameworks (UiO-MOFs) node-supported ruthenium dihydrides (UiO-RuH2), which are efficient heterogeneous catalysts for hydrogenolysis of polyethylene at 200 °C, affording liquid hydrocarbons with a narrow distribution and excellent selectivity via shape-selective catalysis. UiO-66-RuH2 catalyzed hydrogenolysis of single-use low-density polyethylene (LDPE) produced a C12 centered narrow bell-shaped distribution of C8-C16 alkanes in >80% yield and 90% selectivity in the liquid phase. By tuning the pore sizes of the isoreticular UiO-RuH2 MOF catalysts, the distribution of the products could be systematically altered, affording different fuel-grade liquid hydrocarbons from LDPE in high yields. Our spectroscopic and theoretical studies and control experiments reveal that UiO-RuH2 catalysts enable highly efficient upcycling of plastic wastes under mild conditions owing to their unique combination of coordinatively unsaturated single-site Ru-active sites, uniform and tunable pores, well-defined porous structure, and superior stability. The kinetics and theoretical calculations also identify the C-C bond scission involving ß-alkyl transfer as the turnover-limiting step.

5.
Dalton Trans ; 52(42): 15384-15393, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37043211

RESUMEN

N-Formylation of amines with CO2 as a cheap and non-toxic C1-feedstock and hydrosilane reducing agent is a practical and environment friendly method to synthesize formamides. This study describes an efficient and chemoselective mono-N-formylation of amines using CO2 and phenylsilane under mild conditions using a porous metal-organic framework (MOF)-supported single-site cobalt catalyst (pyrim-UiO-Co). The pyrim-UiO-Co MOF has a UiO-topology, and its organic linkers bear a pyridylimine ligated Co catalytic moiety. A wide range of aliphatic and aromatic amines are transformed into desired N-formamides in moderate to excellent yields under 1-5 bar CO2. Pyrim-UiO-Co is tolerant to various functional groups and could be recycled and reused at least 10 times. Mechanistic investigation using kinetic, spectroscopic and density functional theory studies suggests that the formylation of benzylamine proceeds sequentially via oxidative addition of PhSiH3 and CO2 insertion, followed by a turn-over limiting reaction with an amine. Our work highlights the importance of MOF-based Earth-abundant metal catalysts for the practical and eco-friendly synthesis of fine chemicals using cheap feedstocks.

6.
J Am Chem Soc ; 145(11): 6156-6165, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36897313

RESUMEN

Acetic acid is an industrially important chemical, produced mainly via carbonylation of methanol using precious metal-based homogeneous catalysts. As a low-cost feedstock, methane is commercially transformed to acetic acid via a multistep process involving energy-intensive methane steam reforming, methanol synthesis, and, subsequently, methanol carbonylation. Here, we report a direct single-step conversion of methane to acetic acid using molecular oxygen (O2) as the oxidant under mild conditions over a mono-copper hydroxyl site confined in a porous cerium metal-organic framework (MOF), Ce-UiO-Cu(OH). The Ce-UiO MOF-supported single-site copper hydroxyl catalyst gave exceptionally high acetic acid productivity of 335 mmolgcat-1 in 96% selectivity with a Cu TON up to 400 at 115 °C in water. Our spectroscopic and theoretical studies and controlled experiments reveal that the conversion of methane to acetic acid occurs via oxidative carbonylation, where methane is first activated at the copper hydroxyl site via σ-bond metathesis to afford Cu-methyl species, followed by carbonylation with in situ-generated carbon monoxide and subsequent hydrolysis by water. This work may guide the rational design of heterogeneous abundant metal catalysts for the activation and conversion of methane to acetic acid and other valuable chemicals under mild and environmentally friendly reaction conditions.

7.
Inorg Chem ; 61(2): 1031-1040, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34967211

RESUMEN

The development of heterogeneous, chemoselective, and tandem catalytic systems using abundant metals is vital for the sustainable synthesis of fine and commodity chemicals. We report a robust and recyclable single-site cobalt-hydride catalyst based on a porous aluminum metal-organic framework (DUT-5 MOF) for chemoselective hydrogenation of arenes. The DUT-5 node-supported cobalt(II) hydride (DUT-5-CoH) is a versatile solid catalyst for chemoselective hydrogenation of a range of nonpolar and polar arenes, including heteroarenes such as pyridines, quinolines, isoquinolines, indoles, and furans to afford cycloalkanes and saturated heterocycles in excellent yields. DUT-5-CoH exhibited excellent functional group tolerance and could be reusable at least five times without decreased activity. The same MOF-Co catalyst was also efficient for tandem hydrogenation-hydrodeoxygenation of aryl carbonyl compounds, including biomass-derived platform molecules such as furfural and hydroxymethylfurfural to cycloalkanes. In the case of hydrogenation of cumene, our spectroscopic, kinetic, and density functional theory (DFT) studies suggest the insertion of a trisubstituted alkene intermediate into the Co-H bond occurring in the turnover limiting step. Our work highlights the potential of MOF-supported single-site base-metal catalysts for sustainable and environment-friendly industrial production of chemicals and biofuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...