Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Saudi J Biol Sci ; 29(4): 3051-3061, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531148

RESUMEN

Applying biotechnological tools to the selection of higher-yielding bioeconomic crops is a promising and remarkable means of reducing the burden on production on a global scale. In the present study, 25 germplasms of Indian ginseng (Withania somnifera (L.) Dunal) were examined for their genetic diversity by using morphological, biochemical, and molecular markers for twenty plant growth traits. The properties of plant growth differed significantly in the maximum genotypes of Indian ginseng, the markers of randomly amplified polymorphic DNA (RAPD), and inter simple sequence repeat (ISSR) showed considerable diversity between the genotypes. The combined unweighted pair group technique with arithmetic mean (UPGMA) dendrogram of morphological, biochemical, and molecular markers grouped all 25 genotypes into two main clusters at 0.61 coefficient value. In addition to this, secondary metabolite profiling by high-performance liquid chromatography (HPLC), there were high variations for withanolide B (WL-B), withanoside-V (WS-V), wedelolactone (WDL), withanoside-IV (WS-IV), and withaferin A (WF-A) content between different genotypes. For the total alkaloid and withanolide concentration in the roots and leaves, high heritability with an increased genetic gain was observed, indicating that selection based on these traits could be an effective method in breeding programs. Furthermore, the path coefficient analysis showed a direct positive impact of the total root fiber, WL-B (leaves), WF-A (leaves), WS-IV (roots), WDL (roots), and the total alkaloid content on the dry root yield. High content of WDL, a high-quality bioactive withanolide, was also described for the first time in the genotype UWS23. These properties can further be exploited to improve the dry root yield in W. somnifera genotypes. The outcomes of the present study also provide an essential foundation for the selection of high-yielding bioeconomic varieties that could be utilized to improve Ashwagandha breeding programs.

2.
Biomed Res Int ; 2022: 5275449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619307

RESUMEN

Global agriculture is frequently subjected to stresses from increased salt content, drought, heavy metals, and other factors, which limit plant growth and production, deteriorate soil health, and constitute a severe danger to global food security. Development of environmentally acceptable mitigation techniques against stresses and restrictions on the use of chemical fertilizers in agricultural fields is essential. Therefore, eco-friendly practises must be kept to prevent the detrimental impacts of stress on agricultural regions. The advanced metabolic machinery needed to handle this issue is not now existent in plants to deal against the stresses. Research has shown that the key role and mechanisms of arbuscular mycorrhiza fungi (AMF) to enhance plant nutrient uptake, immobilisation and translocation of heavy metals, and plant growth-promoting attributes may be suitable agents for plant growth under diversed stressed condition. The successful symbiosis and the functional relationship between the plant and AMF may build the protective regulatory mechansm against the key challenge in particular stress. AMF's compatibility with hyperaccumulator plants has also been supported by studies on gene regulation and theoretical arguments. In order to address this account, the present review included reducing the impacts of biotic and abiotic stress through AMF, the mechanisms of AMF to improve the host plant's capacity to endure stress, and the strategies employed by AM fungus to support plant survival in stressful conditions.


Asunto(s)
Metales Pesados , Micorrizas , Micorrizas/genética , Micorrizas/metabolismo , Simbiosis , Agricultura/métodos , Desarrollo de la Planta , Plantas/microbiología , Metales Pesados/toxicidad , Metales Pesados/metabolismo
3.
Curr Microbiol ; 78(2): 739-748, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33416972

RESUMEN

In the present study, twenty seven cellulose-degrading bacteria (CDB) were isolated from various organic manures and their cellulolytic activities were determined. The bacterial isolate CDB-26 showed the highest cellulolytic index, released 0.507 ± 0.025 mg/ml glucose and produced 0.196 ± 0.014 IU/ml cellulase enzyme under in vitro conditions. Biochemically, all the 27 isolates showed difference in the 6 biochemical tests performed. Further, all the 27 CDB isolates were subjected to various plant growth-promoting activities, and all CDB strains were positive for IAA production, GA3 production and siderophore production, whereas 19 strains were positive for ACC deaminase activity, 21 strains showed NH3 production and 19 strains were positive for HCN production. Out of 27 CDB isolates, 18 isolates were able to solubilize phosphate, 21 isolates were able to solubilize potash and 10 CDB isolates were found positive for silica solubilization. The molecular diversity among different CDB isolates was studied through ARDRA and demonstrated very high genetic diversity among these bacteria. The in vitro cellulose-degradation potential of these CDB isolates using vegetable waste as substrate were also assessed, and the 3 CDB isolates viz. Serratia surfactantfaciens (CDB-26), Stenotrophomonas rhizophila (CDB-16) and Pseudomonas fragi (CDB-5) showed the highest cellulose-degrading potential under in vitro conditions. Hence, the cellulolytic microbes isolated in the present study could be used for effective bioconversion of plant biomasses into enriched compost.


Asunto(s)
Celulosa , Estiércol , Desarrollo de la Planta , Stenotrophomonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA