Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3955, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729929

RESUMEN

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single-molecule and bulk approaches, we discover how a single Mn2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the representative Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis , Conformación de Ácido Nucleico , ARN Bacteriano , Riboswitch , Transcripción Genética , Riboswitch/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/química , Manganeso/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Imagen Individual de Molécula
2.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562847

RESUMEN

Protein synthesis begins with the formation of a ribosome-mRNA complex. In bacteria, the 30S ribosomal subunit is recruited to many mRNAs through base pairing with the Shine Dalgarno (SD) sequence and RNA binding by ribosomal protein bS1. Translation can initiate on nascent mRNAs and RNA polymerase (RNAP) can promote recruitment of the pioneering 30S subunit. Here we examined ribosome recruitment to nascent mRNAs using cryo-EM, single-molecule fluorescence co-localization, and in-cell crosslinking mass spectrometry. We show that bS1 delivers the mRNA to the ribosome for SD duplex formation and 30S subunit activation. Additionally, bS1 mediates the stimulation of translation initiation by RNAP. Together, our work provides a mechanistic framework for how the SD duplex, ribosomal proteins and RNAP cooperate in 30S recruitment to mRNAs and establish transcription-translation coupling.

3.
Res Sq ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352525

RESUMEN

Widespread manganese-sensing transcriptional riboswitches effect the dependable gene regulation needed for bacterial manganese homeostasis in changing environments. Riboswitches - like most structured RNAs - are believed to fold co-transcriptionally, subject to both ligand binding and transcription events; yet how these processes are orchestrated for robust regulation is poorly understood. Through a combination of single molecule and bulk approaches, we discovered how a single Mn 2+ ion and the transcribing RNA polymerase (RNAP), paused immediately downstream by a DNA template sequence, are coordinated by the bridging switch helix P1.1 in the paradigmatic Lactococcus lactis riboswitch. This coordination achieves a heretofore-overlooked semi-docked global conformation of the nascent RNA, P1.1 base pair stabilization, transcription factor NusA ejection, and RNAP pause extension, thereby enforcing transcription readthrough. Our work demonstrates how a central, adaptable RNA helix functions analogous to a molecular fulcrum of a first-class lever system to integrate disparate signals for finely balanced gene expression control.

4.
RNA ; 30(4): 381-391, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38253429

RESUMEN

Bacterial riboswitches are molecular structures that play a crucial role in controlling gene expression to maintain cellular balance. The Escherichia coli lysC riboswitch has been previously shown to regulate gene expression through translation initiation and mRNA decay. Recent research suggests that lysC gene expression is also influenced by Rho-dependent transcription termination. Through a series of in silico, in vitro, and in vivo experiments, we provide experimental evidence that the lysC riboswitch directly and indirectly modulates Rho transcription termination. Our study demonstrates that Rho-dependent transcription termination plays a significant role in the cotranscriptional regulation of lysC expression. Together with previous studies, our work suggests that lysC expression is governed by a lysine-sensing riboswitch that regulates translation initiation, transcription termination, and mRNA degradation. Notably, both Rho and RNase E target the same region of the RNA molecule, implying that RNase E may degrade Rho-terminated transcripts, providing a means to selectively eliminate these incomplete messenger RNAs. Overall, this study sheds light on the complex regulatory mechanisms used by bacterial riboswitches, emphasizing the role of transcription termination in the control of gene expression and mRNA stability.


Asunto(s)
Riboswitch , Riboswitch/genética , Secuencia de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética , Bacterias/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo
5.
Cell Chem Biol ; 31(1): 71-85, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38211587

RESUMEN

Commensal and pathogenic bacteria continuously evolve to survive in diverse ecological niches by efficiently coordinating gene expression levels in their ever-changing environments. Regulation through the RNA transcript itself offers a faster and more cost-effective way to adapt than protein-based mechanisms and can be leveraged for diagnostic or antimicrobial purposes. However, RNA can fold into numerous intricate, not always functional structures that both expand and obscure the plethora of roles that regulatory RNAs serve within the cell. Here, we review the current knowledge of bacterial non-coding RNAs in relation to their folding pathways and interactions. We posit that co-transcriptional folding of these transcripts ultimately dictates their downstream functions. Elucidating the spatiotemporal folding of non-coding RNAs during transcription therefore provides invaluable insights into bacterial pathogeneses and predictive disease diagnostics. Finally, we discuss the implications of co-transcriptional folding andapplications of RNAs for therapeutics and drug targets.


Asunto(s)
ARN Largo no Codificante , ARN , Bacterias/genética , Bacterias/metabolismo , Genes Bacterianos , ARN no Traducido , Expresión Génica , Regulación de la Expresión Génica , ARN Bacteriano/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
6.
Nat Struct Mol Biol ; 30(7): 902-913, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264140

RESUMEN

Folding of nascent transcripts can be modulated by the RNA polymerase (RNAP) that carries out their transcription, and vice versa. A pause of RNAP during transcription of a preQ1 riboswitch (termed que-PEC) is stabilized by a previously characterized template consensus sequence and the ligand-free conformation of the nascent RNA. Ligand binding to the riboswitch induces RNAP pause release and downstream transcription termination; however, the mechanism by which riboswitch folding modulates pausing is unclear. Here, we report single-particle cryo-electron microscopy reconstructions of que-PEC in ligand-free and ligand-bound states. In the absence of preQ1, the RNA transcript is in an unexpected hyper-translocated state, preventing downstream nucleotide incorporation. Strikingly, on ligand binding, the riboswitch rotates around its helical axis, expanding the surrounding RNAP exit channel and repositioning the transcript for elongation. Our study reveals the tight coupling by which nascent RNA structures and their ligands can functionally regulate the macromolecular transcription machinery.


Asunto(s)
Proteínas de Escherichia coli , Riboswitch , ARN Bacteriano/química , Ligandos , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Pliegue del ARN , Bacterias/metabolismo , Conformación de Ácido Nucleico
7.
Expert Opin Ther Targets ; 27(6): 433-445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37364239

RESUMEN

INTRODUCTION: The growth of antibiotic resistance among bacterial pathogens is an impending global threat that can only be averted through the development of novel antibacterial drugs. A promising answer could be the targeting of riboswitches, structured RNA elements found almost exclusively in bacteria. AREAS COVERED: This review examines the potential of riboswitches as novel antibacterial drug targets. The limited mechanisms of action of currently available antibiotics are summarized, followed by a delineation of the functional mechanisms of riboswitches. We then discuss the potential for developing novel approaches that target paradigmatic riboswitches in the context of their bacterial gene expression machinery. EXPERT OPINION: We highlight potential advantages of targeting riboswitches in their functional form, embedded within gene expression complexes critical for bacterial survival. We emphasize the benefits of this approach, including potentially higher species specificity and lower side effects.


Asunto(s)
Riboswitch , Humanos , Riboswitch/genética , Antibacterianos/farmacología , Bacterias/genética
8.
Nat Commun ; 13(1): 207, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017489

RESUMEN

The archetypical transcriptional crcB fluoride riboswitch from Bacillus cereus is an intricately structured non-coding RNA element enhancing gene expression in response to toxic levels of fluoride. Here, we used single molecule FRET to uncover three dynamically interconverting conformations appearing along the transcription process: two distinct undocked states and one pseudoknotted docked state. We find that the fluoride anion specifically snap-locks the magnesium-induced, dynamically docked state. The long-range, nesting, single base pair A40-U48 acts as the main linchpin, rather than the multiple base pairs comprising the pseudoknot. We observe that the proximally paused RNA polymerase further fine-tunes the free energy to promote riboswitch docking. Finally, we show that fluoride binding at short transcript lengths is an early step toward partitioning folding into the docked conformation. These results reveal how the anionic fluoride ion cooperates with the magnesium-associated RNA to govern regulation of downstream genes needed for fluoride detoxification of the cell.


Asunto(s)
Bacillus cereus/química , Fluoruros/química , Magnesio/química , ARN Bacteriano/química , ARN Mensajero/química , Riboswitch , Bacillus cereus/genética , Bacillus cereus/metabolismo , Emparejamiento Base , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Fluoruros/farmacología , Regulación Bacteriana de la Expresión Génica , Magnesio/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termodinámica
9.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782462

RESUMEN

Cotranscriptional RNA folding is widely assumed to influence the timely control of gene expression, but our understanding remains limited. In bacteria, the fluoride (F-)-sensing riboswitch is a transcriptional control element essential to defend against toxic F- levels. Using this model riboswitch, we find that its ligand F- and essential bacterial transcription factor NusA compete to bind the cotranscriptionally folding RNA, opposing each other's modulation of downstream pausing and termination by RNA polymerase. Single-molecule fluorescence assays probing active transcription elongation complexes discover that NusA unexpectedly binds highly reversibly, frequently interrogating the complex for emerging, cotranscriptionally folding RNA duplexes. NusA thus fine-tunes the transcription rate in dependence of the ligand-responsive higher-order structure of the riboswitch. At the high NusA concentrations found intracellularly, this dynamic modulation is expected to lead to adaptive bacterial transcription regulation with fast response times.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Ligandos , Riboswitch , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Pliegue del ARN , ARN Bacteriano/genética , Factores de Transcripción/genética , Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética
10.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740970

RESUMEN

Cotranscriptional RNA folding is crucial for the timely control of biological processes, but because of its transient nature, its study has remained challenging. While single-molecule Förster resonance energy transfer (smFRET) is unique to investigate transient RNA structures, its application to cotranscriptional studies has been limited to nonnative systems lacking RNA polymerase (RNAP)-dependent features, which are crucial for gene regulation. Here, we present an approach that enables site-specific labeling and smFRET studies of kilobase-length transcripts within native bacterial complexes. By monitoring Escherichia coli nascent riboswitches, we reveal an inverse relationship between elongation speed and metabolite-sensing efficiency and show that pause sites upstream of the translation start codon delimit a sequence hotspot for metabolite sensing during transcription. Furthermore, we demonstrate a crucial role of the bacterial RNAP actively delaying the formation, within the hotspot sequence, of competing structures precluding metabolite binding. Our approach allows the investigation of cotranscriptional regulatory mechanisms in bacterial and eukaryotic elongation complexes.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Riboswitch/fisiología , Imagen Individual de Molécula/métodos , Elongación de la Transcripción Genética , Carbocianinas , Escherichia coli , Proteínas de Escherichia coli/análisis , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes
11.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33850018

RESUMEN

Bacterial messenger RNA (mRNA) synthesis by RNA polymerase (RNAP) and first-round translation by the ribosome are often coupled to regulate gene expression, yet how coupling is established and maintained is ill understood. Here, we develop biochemical and single-molecule fluorescence approaches to probe the dynamics of RNAP-ribosome interactions on an mRNA with a translational preQ1-sensing riboswitch in its 5' untranslated region. Binding of preQ1 leads to the occlusion of the ribosome binding site (RBS), inhibiting translation initiation. We demonstrate that RNAP poised within the mRNA leader region promotes ribosomal 30S subunit binding, antagonizing preQ1-induced RBS occlusion, and that the RNAP-30S bridging transcription factors NusG and RfaH distinctly enhance 30S recruitment and retention, respectively. We further find that, while 30S-mRNA interaction significantly impedes RNAP in the absence of translation, an actively translating ribosome promotes productive transcription. A model emerges wherein mRNA structure and transcription factors coordinate to dynamically modulate the efficiency of transcription-translation coupling.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Ribosomas/metabolismo , Riboswitch/fisiología , Regiones no Traducidas 5' , Sitios de Unión , ARN Polimerasas Dirigidas por ADN/fisiología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Ribosomas/genética , Riboswitch/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética
12.
Nucleic Acids Res ; 47(12): 6478-6487, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31045204

RESUMEN

Riboswitches are cis-acting regulatory RNA biosensors that rival the efficiency of those found in proteins. At the heart of their regulatory function is the formation of a highly specific aptamer-ligand complex. Understanding how these RNAs recognize the ligand to regulate gene expression at physiological concentrations of Mg2+ ions and ligand is critical given their broad impact on bacterial gene expression and their potential as antibiotic targets. In this work, we used single-molecule FRET and biochemical techniques to demonstrate that Mg2+ ions act as fine-tuning elements of the amino acid-sensing lysC aptamer's ligand-free structure in the mesophile Bacillus subtilis. Mg2+ interactions with the aptamer produce encounter complexes with strikingly different sensitivities to the ligand in different, yet equally accessible, physiological ionic conditions. Our results demonstrate that the aptamer adapts its structure and folding landscape on a Mg2+-tunable scale to efficiently respond to changes in intracellular lysine of more than two orders of magnitude. The remarkable tunability of the lysC aptamer by sub-millimolar variations in the physiological concentration of Mg2+ ions suggests that some single-aptamer riboswitches have exploited the coupling of cellular levels of ligand and divalent metal ions to tightly control gene expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Magnesio/fisiología , Riboswitch , Bacillus subtilis/química , Bacillus subtilis/genética , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Magnesio/análisis , Pliegue del ARN , Transcripción Genética
13.
PLoS Genet ; 15(5): e1008157, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31136569

RESUMEN

Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.


Asunto(s)
Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , ARN Polimerasa I/genética , ADN Ribosómico/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Precursores del ARN/genética , ARN Ribosómico , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Transcripción Genética
14.
RNA Biol ; 16(8): 1066-1073, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31081713

RESUMEN

Transcriptional pauses have been reported in bacterial riboswitches and, in some cases, their specific positioning has been shown to be important for gene regulation. Here, we show that a hairpin structure in the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch is involved in transcriptional pausing and ligand sensitivity. Using in vitro transcription kinetic experiments, we show that all three major transcriptional pauses in the thiC riboswitch are affected by NusA, a transcriptional factor known to stimulate hairpin-stabilized pauses. Using a truncated region of the riboswitch, we isolated the hairpin structure responsible for stabilization of the most upstream pause. Destabilization of this structure led to a weaker pause and a decreased NusA effect. In the context of the full-length riboswitch, this same mutation also led to a weaker pause, as well as a decreased TPP binding affinity. Our work suggests that RNA structures involved in transcriptional pausing in riboswitches are important for ligand sensitivity, most likely by increasing the time allowed to the ligand for binding to the riboswitch.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Escherichia coli/genética , Riboswitch/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Conformación de Ácido Nucleico , Tiamina Pirofosfato/genética , Factores de Transcripción/genética
15.
Methods ; 162-163: 3-11, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30951833

RESUMEN

RNA structures and their dynamic fluctuations lie at the heart of understanding key biological process such as transcription, splicing, translation and RNA decay. While conventional bulk assays have proven to identify and characterize key pathway intermediates, the generally dynamic nature of RNA structures renders the information obtained from time and ensemble averaging techniques necessarily lacking in critical details. Here we detail Single-Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS), a method that readily monitors structural fluctuations of single RNA molecules through the repetitive interaction of fluorescent probes with an unlabeled, surface-immobilized RNA target of virtually any length and in any biological context. In addition, we demonstrate the broad applicability of SiM-KARTS by kinetically fingerprinting the binding of cognate tRNA ligand to single immobilized T-box riboswitch molecules. SiM-KARTS represents a valuable tool for probing biologically relevant structure and interaction features of potentially many diverse RNA metabolic pathways.


Asunto(s)
Conformación de Ácido Nucleico , ARN de Transferencia/metabolismo , Riboswitch , Imagen Individual de Molécula/métodos , Bacillus subtilis/genética , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Procesamiento de Imagen Asistido por Computador , Cinética , Cadenas de Markov , Microscopía Fluorescente/métodos , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Sondas ARN/química , Sondas ARN/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Transferencia/química , Programas Informáticos
16.
RNA Biol ; 16(9): 1077-1085, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30328748

RESUMEN

Riboswitches are dynamic RNA motifs that are mostly embedded in the 5'-untranslated regions of bacterial mRNAs, where they regulate gene expression transcriptionally or translationally by undergoing conformational changes upon binding of a small metabolite or ion. Due to the small size of typical ligands, relatively little free energy is available from ligand binding to overcome the often high energetic barrier of reshaping RNA structure. Instead, most riboswitches appear to take advantage of the directional and hierarchical folding of RNA by employing the ligand as a structural 'linchpin' to adjust the kinetic partitioning between alternate folds. In this model, even small, local structural and kinetic effects of ligand binding can cascade into global RNA conformational changes affecting gene expression. Single-molecule (SM) microscopy tools are uniquely suited to study such kinetically controlled RNA folding since they avoid the ensemble averaging of bulk techniques that loses sight of unsynchronized, transient, and/or multi-state kinetic behavior. This review summarizes how SM methods have begun to unravel riboswitch-mediated gene regulation.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Pliegue del ARN/genética , Riboswitch/genética , Imagen Individual de Molécula/métodos , Bacterias/genética , Transferencia Resonante de Energía de Fluorescencia/métodos , Cinética , Microscopía Fluorescente/métodos , Pinzas Ópticas
17.
Nucleic Acids Res ; 45(12): 7474-7486, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28520932

RESUMEN

Riboswitches are regulatory elements that control gene expression by altering RNA structure upon the binding of specific metabolites. Although Bacillus subtilis riboswitches have been shown to control premature transcription termination, less is known about regulatory mechanisms employed by Escherichia coli riboswitches, which are predicted to regulate mostly at the level of translation initiation. Here, we present experimental evidence suggesting that the majority of known E. coli riboswitches control transcription termination by using the Rho transcription factor. In the case of the thiamin pyrophosphate-dependent thiM riboswitch, we find that Rho-dependent transcription termination is triggered as a consequence of translation repression. Using in vitro and in vivo assays, we show that the Rho-mediated regulation relies on RNA target elements located at the beginning of thiM coding region. Gene reporter assays indicate that relocating Rho target elements to a different gene induces transcription termination, demonstrating that such elements are modular domains controlling Rho. Our work provides strong evidence that translationally regulating riboswitches also regulate mRNA levels through an indirect control mechanism ensuring tight control of gene expression.


Asunto(s)
Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , Factor Rho/genética , Riboswitch , Terminación de la Transcripción Genética , Secuencia de Bases , Escherichia coli/metabolismo , Genes Reporteros , Conformación de Ácido Nucleico , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor Rho/metabolismo , Tiamina Pirofosfato/metabolismo
18.
Nat Commun ; 8: 13892, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28071751

RESUMEN

On the basis of nascent transcript sequencing, it has been postulated but never demonstrated that transcriptional pausing at translation start sites is important for gene regulation. Here we show that the Escherichia coli thiamin pyrophosphate (TPP) thiC riboswitch contains a regulatory pause site in the translation initiation region that acts as a checkpoint for thiC expression. By biochemically probing nascent transcription complexes halted at defined positions, we find a narrow transcriptional window for metabolite binding, in which the downstream boundary is delimited by the checkpoint. We show that transcription complexes at the regulatory pause site favour the formation of a riboswitch intramolecular lock that strongly prevents TPP binding. In contrast, cotranscriptional metabolite binding increases RNA polymerase pausing and induces Rho-dependent transcription termination at the checkpoint. Early transcriptional pausing may provide a general mechanism, whereby transient transcriptional windows directly coordinate the sensing of environmental cues and bacterial mRNA regulation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Riboswitch/genética , Proteínas Bacterianas/metabolismo , Codón Iniciador , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Biosíntesis de Proteínas , Conformación Proteica , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Tiamina Pirofosfato/metabolismo , Transcripción Genética
19.
J Biol Chem ; 290(44): 26739-51, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26370077

RESUMEN

RNA-based genetic regulation is exemplified by metabolite-binding riboswitches that modulate gene expression through conformational changes. Crystal structures show that the Escherichia coli btuB riboswitch contains a kissing loop interaction that is in close proximity to the bound ligand. To analyze the role of the kissing loop interaction in the riboswitch regulatory mechanism, we used RNase H cleavage assays to probe the structure of nascent riboswitch transcripts produced by the E. coli RNA polymerase. By monitoring the folding of the aptamer, kissing loop, and riboswitch expression platform, we established the conformation of each structural component in the absence or presence of bound adenosylcobalamin. We found that the kissing loop interaction is not essential for ligand binding. However, we showed that kissing loop formation improves ligand binding efficiency and is required to couple ligand binding to the riboswitch conformational changes involved in regulating gene expression. These results support a mechanism by which the btuB riboswitch modulates the formation of a tertiary structure to perform metabolite sensing and regulate gene expression.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Cobamidas/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/química , ARN Bacteriano/química , Riboswitch , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Secuencia de Bases , Transporte Biológico , Cobamidas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ligandos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Plásmidos/química , Plásmidos/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Transcripción Genética
20.
Methods Mol Biol ; 1334: 109-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26404146

RESUMEN

The study of biologically significant and native structures is vital to characterize RNA-based regulatory mechanisms. Riboswitches are cis-acting RNA molecules that are involved in the biosynthesis and transport of cellular metabolites. Because riboswitches regulate gene expression by modulating their structure, it is vital to employ native probing assays to determine how native riboswitch structures perform highly efficient and specific ligand recognition. By employing RNase H probing, it is possible to determine the accessibility of specific RNA domains in various structural contexts. Herein, we describe how to employ RNase H probing to characterize nascent mRNA riboswitch molecules as a way to obtain information regarding the riboswitch regulation control mechanism.


Asunto(s)
Biología Molecular/métodos , ARN Mensajero/química , Ribonucleasa H/química , Riboswitch/genética , Regulación Bacteriana de la Expresión Génica , Ligandos , Conformación de Ácido Nucleico , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...