Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(34): 15825-15837, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35977425

RESUMEN

Hydropersulfides (RSSH) are believed to serve important roles in vivo, including as scavengers of damaging oxidants and electrophiles. The α-effect makes RSSH not only much better nucleophiles than thiols (RSH), but also much more potent H-atom transfer agents. Since HAT is the mechanism of action of the most potent small-molecule inhibitors of phospholipid peroxidation and associated ferroptotic cell death, we have investigated their reactivity in this context. Using the fluorescence-enabled inhibited autoxidation (FENIX) approach, we have found RSSH to be highly reactive toward phospholipid-derived peroxyl radicals (kinh = 2 × 105 M-1 s-1), equaling the most potent ferroptosis inhibitors identified to date. Related (poly)sulfide products resulting from the rapid self-reaction of RSSH under physiological conditions (e.g., disulfide, trisulfide, H2S) are essentially unreactive, but combinations from which RSSH can be produced in situ (i.e., polysulfides with H2S or thiols with H2S2) are effective. In situ generation of RSSH from designed precursors which release RSSH via intramolecular substitution or hydrolysis improve the radical-trapping efficiency of RSSH by minimizing deleterious self-reactions. A brief survey of structure-reactivity relationships enabled the design of new precursors that are more efficient. The reactivity of RSSH and their precursors translates from (phospho)lipid bilayers to cell culture (mouse embryonic fibroblasts), where they were found to inhibit ferroptosis induced by inactivation of glutathione peroxidase-4 (GPX4) or deletion of the gene encoding it. These results suggest that RSSH and the pathways responsible for their biosynthesis may act as a ferroptosis suppression system alongside the recently discovered FSP1/ubiquinone and GCH1/BH4/DHFR systems.


Asunto(s)
Ferroptosis , Animales , Fibroblastos , Peroxidación de Lípido , Ratones , Fosfolípidos , Compuestos de Sulfhidrilo
2.
Chem Sci ; 11(22): 5676-5689, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32832049

RESUMEN

Hydrogen atom transfer (HAT) is the mechanism by which the vast majority of radical-trapping antioxidants (RTAs), such as hindered phenols, inhibit autoxidation. As such, at least one weak O-H bond is the key structural feature which underlies the reactivity of phenolic RTAs. We recently observed that quinone methide dimers (QMDs) synthesized from hindered phenols are significantly more reactive RTAs than the phenols themselves despite lacking O-H bonds. Herein we describe our efforts to elucidate the mechanism by which they inhibit autoxidation. Four possible reaction paths were considered: (1) HAT from the C-H bonds on the carbon atoms which link the quinone methide moieties; (2) tautomerization or hydration of the quinone methide(s) in situ followed by HAT from the resultant phenolic O-H; (3) direct addition of peroxyl radicals to the quinone methide(s), and (4) homolysis of the weak central C-C bond in the QMD followed by combination of the resultant persistent phenoxyl radicals with peroxyl radicals. The insensitivity of the reactivity of the QMDs to substituent effects, solvent effects and a lack of kinetic isotope effects rule out the HAT reactions (mechanisms 1 and 2). Simple (monomeric) quinone methides, to which peroxyl radicals add, were found to be ca. 100-fold less reactive than the QMDs, ruling out mechanism 3. These facts, combined with the poor RTA activity we observe for a QMD with a stronger central C-C bond, support mechanism 4. The lack of solvent effects on the RTA activity of QMDs suggests that they may find application as additives to materials which contain H-bonding accepting moieties that can dramatically suppress the reactivity of conventional RTAs, such as phenols. This reactivity does not extend to biological membranes owing to the increased microviscosity of the phospholipid bilayer, which suppresses QMD dissociation in favour of recombination. Interestingly, the simple QMs were found to be very good RTAs in phospholipid bilayers - besting even the most potent form of vitamin E.

3.
Chem Sci ; 10(19): 4999-5010, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31183049

RESUMEN

Olefin sulfurization, wherein alkenes and sulfur are heated together at high temperatures, produces branched polysulfides. Due to their anti-wear properties, they are indispensible additives to lubricants, but are also added to other petroleum-derived products as oxidation inhibitors. Polysulfides also figure prominently in the chemistry and biology of garlic and other plants of the Allium species. We previously reported that trisulfides, upon oxidation to their corresponding 1-oxides, are surprisingly effective radical-trapping antioxidants (RTAs) at ambient temperatures. Herein, we show that the homolytic substitution mechanism responsible also operates for tetrasulfides, but not trisulfides, disulfides or sulfides. Moreover, we show that this reactivity persists at elevated temperature (160 °C), enabling tetrasulfides to not only eclipse their 1-oxides as RTAs, but also hindered phenols and alkylated diphenylamines - the most common industrial antioxidant additives. The reactivity is unique to higher polysulfides (n ≥ 4), since homolytic substitution upon them at S2 yields stabilized perthiyl radicals. The persistence of perthiyl radicals also underlies the greater reactivity of polysulfides at elevated temperatures relative to their 1-oxides, since homolytic S-S bond cleavage is reversible in the former, but not in the latter. These results suggest that olefin sulfurization processes optimized for tetrasulfide production will afford materials that impart significantly better oxidation stability to hydrocarbon-based products to which polysulfides are added. Moreover, it suggests that RTA activity may contribute to the biological activity of plant-derived polysulfides.

4.
Angew Chem Int Ed Engl ; 57(52): 17125-17129, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30474921

RESUMEN

A simple method for the dimerization of phenylpropenoid derivatives is reported. It leverages electrochemical oxidation of p-unsaturated phenols to access the dimeric materials in a biomimetic fashion. The mild nature of the transformation provides excellent functional group tolerance, resulting in a unified approach for the synthesis of a range of natural products and related analogues with excellent regiocontrol. The operational simplicity of the method allows for greater efficiency in the synthesis of complex natural products. Interestingly, the quinone methide dimer intermediates are potent radical-trapping antioxidants; more so than the phenols from which they are derived-or transformed to-despite the fact that they do not possess a labile H-atom for transfer to the peroxyl radicals that propagate autoxidation.


Asunto(s)
Antioxidantes/química , Técnicas Electroquímicas , Indolquinonas/química , Fenilpropionatos/síntesis química , Dimerización , Estructura Molecular , Fenilpropionatos/química
5.
Chem Sci ; 9(36): 7218-7229, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30288241

RESUMEN

Sulfinic acids (RSO2H) have a reputation for being difficult reagents due to their facile autoxidation. Nevertheless, they have recently been employed as key reagents in a variety of useful radical chain reactions. To account for this paradox and enable further development of radical reactions employing sulfinic acids, we have characterized the thermodynamics and kinetics of their H-atom transfer reactions for the first time. The O-H bond dissociation enthalpy (BDE) of sulfinic acids was determined by radical equilibration to be ∼78 kcal mol-1; roughly halfway between the RS-H BDE in thiols (∼87 kcal mol-1) and RSO-H BDE in sulfenic acids (∼70 kcal mol-1). Regardless, RSH, RSOH and RSO2H have relatively similar inherent H-atom transfer reactivity to alkyl radicals (∼106 M-1 s-1). Counter-intuitively, the trend in rate constants with more reactive alkoxyl radicals follows the reaction energetics: ∼108 M-1 s-1 for RSO2H, midway between thiols (∼107 M-1 s-1) and sulfenic acids (∼109 M-1 s-1). Importantly, since sulfinic and sulfenic acids are very strong H-bond donors (αH2 ∼ 0.63 and 0.55, respectively), their reactivity is greatly attenuated in H-bond accepting solvents, whereas the reactivity of thiols is largely solvent-independent. Efforts to measure rate constants for the reactions of sulfinic acids with alkylperoxyl radicals were unsuccessful. Computations predict these reactions to be surprisingly slow; ∼1000-times slower than for thiols and ∼10 000 000-times slower than for sulfenic acids. On the other hand, the reaction of sulfinic acids with sulfonylperoxyl radicals - which propagate sulfinic acid autoxidation - is predicted to be almost diffusion-controlled. In fact, the rate-determining step in sulfinic acid autoxidation, and the reason they can be used for productive chemistry, is the relatively slow reaction of propagating sulfonyl radicals with O2 (∼106 M-1 s-1).

6.
J Am Chem Soc ; 139(18): 6484-6493, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28419803

RESUMEN

Hydropersulfides (RSSH) are formed endogenously via the reaction of the gaseous biotransmitter hydrogen sulfide (H2S) and disulfides (RSSR) and/or sulfenic acids (RSOH). RSSH have been investigated for their ability to store H2S in vivo and as a line of defense against oxidative stress, from which it is clear that RSSH are much more reactive to two-electron oxidants than thiols. Herein we describe the results of our investigations into the H-atom transfer chemistry of RSSH, contrasting it with the well-known H-atom transfer chemistry of thiols. In fact, RSSH are excellent H-atom donors to alkyl (k ∼ 5 × 108 M-1 s-1), alkoxyl (k ∼ 1 × 109 M-1 s-1), peroxyl (k ∼ 2 × 106 M-1 s-1), and thiyl (k > 1 × 1010 M-1 s-1) radicals, besting thiols by as little as 1 order and as much as 4 orders of magnitude. The inherently high reactivity of RSSH to H-atom transfer is based largely on thermodynamic factors; the weak RSS-H bond dissociation enthalpy (∼70 kcal/mol) and the associated high stability of the perthiyl radical make the foregoing reactions exothermic by 15-34 kcal/mol. Of particular relevance in the context of oxidative stress is the reactivity of RSSH to peroxyl radicals, where favorable thermodynamics are bolstered by a secondary orbital interaction in the transition state of the formal H-atom transfer that drives the inherent reactivity of RSSH to match that of α-tocopherol (α-TOH), nature's premier radical-trapping antioxidant. Significantly, the reactivity of RSSH eclipses that of α-TOH in H-bond-accepting media because of their low H-bond acidity (α2H ∼ 0.1). This affords RSSH a unique versatility compared to other highly reactive radical-trapping antioxidants (e.g., phenols, diarylamines, hydroxylamines, sulfenic acids), which tend to have high H-bond acidities. Moreover, the perthiyl radicals that result are highly persistent under autoxidation conditions and undergo very rapid dimerization (k = 5 × 109 M-1 s-1) in lieu of reacting with O2 or autoxidizable substrates.

7.
Angew Chem Int Ed Engl ; 56(22): 6255-6259, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-27933690

RESUMEN

The reaction of thiols with H2 O2 is central to many processes essential to life, from protein folding to redox signaling. The initial products are assumed to be sulfenic acids, but their observation, and the kinetic and mechanistic characterization of their subsequent reactions, has proven challenging. The introduction of a 9-fluorotriptycene substituent enabled the use of 19 F NMR to directly monitor the reaction of a thiol with H2 O2 to yield a sulfenic acid, and its subsequent oxidation to sulfinic and sulfonic acids. The oxidations are specific base catalyzed, as revealed by the lack of isotope effects and the dependence of the kinetics on pH but not buffer concentration.

8.
Science ; 354(6317): 1260-1265, 2016 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-27940867

RESUMEN

Persistent free radicals have become indispensable in the synthesis of organic materials through living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Here, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action.


Asunto(s)
Benzofuranos/síntesis química , Productos Biológicos/síntesis química , Indolquinonas/química , Resorcinoles/síntesis química , Estilbenos/síntesis química , Carbono/química , Dimerización , Oxidación-Reducción , Resveratrol
9.
Chem Sci ; 7(10): 6347-6356, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28567247

RESUMEN

Polysulfides are important additives to a wide variety of industrial and consumer products and figure prominently in the chemistry and biology of garlic and related medicinal plants. Although their antioxidant activity in biological contexts has received only recent attention, they have long been ascribed 'secondary antioxidant' activity in the chemical industry, where they are believed to react with the hydroperoxide products of autoxidation to slow the auto-initiation of new autoxidative chain reactions. Herein we demonstrate that the initial products of trisulfide oxidation, trisulfide-1-oxides, are surprisingly reactive 'primary antioxidants', which slow autoxidation by trapping chain-carrying peroxyl radicals. In fact, they do so with rate constants (k = 1-2 × 104 M-1 s-1 at 37 °C) that are indistinguishable from those of the most common primary antioxidants, i.e. hindered phenols, such as BHT. Experimental and computational studies demonstrate that the reaction occurs by a concerted bimolecular homolytic substitution (SH2), liberating a perthiyl radical - which is ca. 16 kcal mol-1 more stable than a peroxyl radical. Interestingly, the (electrophilic) peroxyl radical nominally reacts as a nucleophile - attacking the of the trisulfide-1-oxide - a role hitherto suspected only for its reactions at metal atoms. The analogous reactions of trisulfides are readily reversible and not kinetically competent to inhibit hydrocarbon autoxidation, consistent with the longstanding view that organosulfur compounds must be oxidized to afford significant antioxidant activity. The reactivity of trisulfides and their oxides are contrasted with what is known of their shorter cousins and predictions are made and tested with regards to the reactivity of higher polysulfides and their 1-oxides - the insights from which may be exploited in the design of future antioxidants.

10.
Chem Sci ; 6(11): 6165-6178, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30090232

RESUMEN

The radical-trapping antioxidant (RTA) activities of allicin and petivericin, thiosulfinates widely believed responsible for the medicinal properties of garlic and Petiveria, were determined in phosphatidylcholine lipid bilayers. The results indicate that both compounds are surprisingly ineffective, in sharp contrast with previous studies in organic solution which showed that they undergo facile Cope elimination to produce sulfenic acids - potent radical-trapping agents. In an effort to understand the medium dependence of this activity, a more lipophilic (hexylated) analog of petivericin was synthesized and shown to be among the most effective RTAs known, but only in the presence of a hydrophilic thiol (e.g. N-acetylcysteine). Additional symmetric and unsymmetric thiosulfinates were synthesized to shed light on the structural features that underlie this reactivity. These studies reveal that amphiphilic thiosulfinates which undergo S-thiolation with a hydrophilic thiol to give lipophilic sulfenic acids are required, and that an activated methylene group - key to promote Cope elimination - is not. Interestingly, the added thiol was also found to regenerate the sulfenic acid following its reaction with peroxyl radicals. This activity was diminished at more acidic pH, suggesting that it occurs by electron transfer from the thiolate. Allicin, petivericin and hexylated petivericin were assayed as inhibitors of lipid peroxidation in human TF1a erythroblasts and HEK-293 kidney cells, revealing similar efficacies in the low µM range - the same range in which allicin and petivericin were found to induce cell death concomitant with, or as a result of, glutathione (GSH) depletion. In contrast, hexylated petivericin was not cytotoxic throughout the concentration range assayed, and had no effect on GSH levels. Taken together, the results in lipid bilayers and in cell culture suggest that the greater lipophilicity of hexylated petivericin enables it to partition to membranous cell compartments where it forms a lipid-soluble sulfenic acid that traps peroxyl radicals, whereas allicin and petivericin partition to the cytosol where they deplete GSH and induce cell death.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...