Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 5813, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461196

RESUMEN

Vertical stacking of different two-dimensional (2D) materials into van der Waals heterostructures exploits the properties of individual materials as well as their interlayer coupling, thereby exhibiting unique electrical and optical properties. Here, we study and investigate a system consisting entirely of different 2D materials for the implementation of electronic devices that are based on quantum mechanical band-to-band tunneling transport such as tunnel diodes and tunnel field-effect transistors. We fabricated and characterized van der Waals heterojunctions based on semiconducting layers of WSe2 and MoS2 by employing different gate configurations to analyze the transport properties of the junction. We found that the device dielectric environment is crucial for achieving tunneling transport across the heterojunction by replacing thick oxide dielectrics with thin layers of hexagonal-boronnitride. With the help of additional top gates implemented in different regions of our heterojunction device, it was seen that the tunneling properties as well as the Schottky barriers at the contact interfaces could be tuned efficiently by using layers of graphene as an intermediate contact material.

2.
ACS Appl Mater Interfaces ; 15(34): 40709-40718, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37606167

RESUMEN

This work demonstrates the novel concept of a mixed-dimensional reconfigurable field effect transistor (RFET) by combining a one-dimensional (1D) channel material such as a silicon (Si) nanowire with a two-dimensional (2D) material as a gate dielectric. An RFET is an innovative device that can be dynamically programmed to perform as either an n- or p-FET by applying appropriate gate potentials. In this work, an insulating 2D material, hexagonal boron nitride (hBN), is introduced as a gate dielectric and encapsulation layer around the nanowire in place of a thermally grown or atomic-layer-deposited oxide. hBN flake was mechanically exfoliated and transferred onto a silicon nanowire-based RFET device using the dry viscoelastic stamping transfer technique. The thickness of the hBN flakes was investigated by atomic force microscopy and transmission electron microscopy. The ambipolar transfer characteristics of the Si-hBN RFETs with different gating architectures showed a significant improvement in the device's electrical parameters due to the encapsulation and passivation of the nanowire with the hBN flake. Both n- and p-type characteristics measured through the top gate exhibited a reduction of hysteresis by 10-20 V and an increase in the on-off ratio (ION/IOFF) by 1 order of magnitude (up to 108) compared to the values measured for unpassivated nanowire. Specifically, the hBN encapsulation provided improved electrostatic top gate coupling, which is reflected in the enhanced subthreshold swing values of the devices. For a single nanowire, an improvement up to 0.97 and 0.5 V/dec in the n- and p-conduction, respectively, is observed. Due to their dynamic switching and polarity control, RFETs boast great potential in reducing the device count, lowering power consumption, and playing a crucial role in advanced electronic circuitry. The concept of mixed-dimensional RFET could further strengthen its functionality, opening up new pathways for future electronics.

3.
Small Methods ; 7(10): e2300618, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37462245

RESUMEN

Van der Waals materials exhibit intriguing properties for future electronic and optoelectronic devices. As those unique features strongly depend on the materials' thickness, it has to be accessed precisely for tailoring the performance of a specific device. In this study, a nondestructive and technologically easily implementable approach for accurate thickness determination of birefringent layered materials is introduced by combining optical reflectance measurements with a modular model comprising a 4×4 transfer matrix method and the optical components relevant to light microspectroscopy. This approach is demonstrated being reliable and precise for thickness determination of anisotropic materials like highly oriented pyrolytic graphite and black phosphorus in a range from atomic layers up to more than 100 nm. As a key feature, the method is well-suited even for encapsulated layers outperforming state of-the-art techniques like atomic force microscopy.

4.
ACS Appl Mater Interfaces ; 14(9): 11927-11936, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35191687

RESUMEN

Two-dimensional (2D) van der Waals materials with broadband optical absorption are promising candidates for next-generation UV-vis-NIR photodetectors. FePS3, one of the emerging antiferromagnetic van der Waals materials with a wide bandgap and p-type conductivity, has been reported as an excellent candidate for UV optoelectronics. However, a high sensitivity photodetector with a self-driven mode based on FePS3 has not yet been realized. Here, we report a high-performance and self-powered photodetector based on a multilayer MoSe2/FePS3 type-II n-p heterojunction with a working range from 350 to 900 nm. The presented photodetector operates at zero bias and at room temperature under ambient conditions. It exhibits a maximum responsivity (Rmax) of 52 mA W-1 and an external quantum efficiency (EQEmax) of 12% at 522 nm, which are better than the characteristics of its individual constituents and many other photodetectors made of 2D heterostructures. The high performance of MoSe2/FePS3 is attributed to the built-in electric field in the MoSe2/FePS3 n-p junction. Our approach provides a promising platform for broadband self-driven photodetector applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...