Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Future Med Chem ; 16(3): 239-251, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38205637

RESUMEN

Background: Gankyrin is an ankyrin-repeat protein that promotes cell proliferation, tumor development and cancer progression when overexpressed. Aim: To design and synthesize a novel series of gankyrin-binding small molecules predicated on a 2,5-pyrimidine scaffold. Materials & methods: The synthesized compounds were evaluated for their antiproliferative activity, ability to bind gankyrin and effects on cell cycle progression and the proteasomal degradation pathway. Results: Compounds 188 and 193 demonstrated the most potent antiproliferative activity against MCF7 and A549 cells, respectively. Both compounds also demonstrated the ability to effectively bind gankyrin, disrupt proteasomal degradation and inhibit cell cycle progression. Conclusion: The 2,5-pyrimidine scaffold exhibits a novel and promising strategy for binding gankyrin and inhibiting cancer cell proliferation.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Neoplasias/metabolismo , Línea Celular Tumoral
2.
AAPS PharmSciTech ; 24(1): 49, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702977

RESUMEN

Tuberculosis (TB) is a contiguous airborne disease caused by Mycobacterium tuberculosis (M.tb), primarily affecting the human lungs. The progression of drug-susceptible TB to drug-resistant strains, MDR-TB and XDR-TB, has become a global challenge toward eradicating TB. Conventional TB treatment involves frequent dosing and prolonged treatment regimens predominantly by an oral or invasive route, leading to treatment-related systemic adverse effects and patient's noncompliance. Pulmonary delivery is an attractive option as we could reduce dose, limit systemic side-effects, and achieve rapid onset of action. Delamanid (DLD), an antituberculosis drug, has poor aqueous solubility, and in this study, we aim to improve its solubility using cyclodextrin complexation. We screened different cyclodextrins and found that HP-ß-CD resulted in a 54-fold increase in solubility compared to a 27-fold and 13-fold increase by SBE-ß-CD and HP-É£-CD, respectively. The stability constant (265 ± 15 M-1) and complexation efficiency (8.5 × 10-4) suggest the formation of a stable inclusion complex of DLD and HP-ß-CD in a 2:1 ratio. Solid-state characterization studies (DSC, PXRD, and NMR) further confirmed successful complexation of DLD in HP-ß-CD. The nebulized DLD-CD complex solution showed a mass median aerodynamic diameter of 4.42 ± 0.62 µm and fine particle fraction of 82.28 ± 2.79%, suggesting deposition in the respiratory airways. In bacterial studies, minimum inhibitory concentration of DLD-CD complex was significantly reduced (four-fold) compared to free DLD in M.tb (H37Ra strain). Furthermore, accelerated stability studies confirmed that the inclusion complex was stable for 4 weeks with 90%w/w drug content. In conclusion, we increased the aqueous solubility of DLD through cyclodextrin complexation and improved its efficacy in vitro.


Asunto(s)
Ciclodextrinas , Tuberculosis Pulmonar , Tuberculosis , Humanos , Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Solubilidad , Pulmón , Tuberculosis Pulmonar/tratamiento farmacológico
3.
J Med Chem ; 65(13): 8975-8997, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35758870

RESUMEN

Gankyrin is an oncoprotein responsible for the development of numerous cancer types. It regulates the expression levels of multiple tumor suppressor proteins (TSPs) in liver cancer; however, gankyrin's regulation of these TSPs in breast and lung cancers has not been thoroughly investigated. Additionally, no small-molecule gankyrin inhibitor has been developed which demonstrates potent anti-proliferative activity against gankyrin overexpressing breast and lung cancers. Herein, we are reporting the structure-based design of gankyrin-binding small molecules which potently inhibited the proliferation of gankyrin overexpressing A549 and MDA-MB-231 cancer cells, reduced colony formation, and inhibited the growth of 3D spheroids in an in vitro tumor simulation model. Investigations demonstrated that gankyrin inhibition occurs through either stabilization or destabilization of its 3D structure. These studies shed light on the mechanism of small-molecule inhibition of gankyrin and demonstrate that gankyrin is a viable therapeutic target for the treatment of breast and lung cancer.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Supresoras de Tumor
4.
Future Med Chem ; 13(19): 1679-1694, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34410182

RESUMEN

α-Mangostin is a xanthone natural product isolated as a secondary metabolite from the mangosteen tree. It has attracted a great deal of attention due to its wide-ranging effects on certain biological activity, such as apoptosis, tumorigenesis, proliferation, metastasis, inflammation, oxidation, bacterial growth and metabolism. This review focuses on the key pathways directly affected by α-mangostin and how this varies between disease states. Insight is also provided, where investigated, into the key structural features of α-mangostin that produce these biological effects. The review then sheds light on the utility of α-mangostin as a investigational tool for certain diseases and demonstrate how future derivatives may increase selectivity and potency for specific disease states.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/farmacología , Hipoglucemiantes/farmacología , Xantonas/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus/tratamiento farmacológico , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Inflamación/tratamiento farmacológico , Estructura Molecular , Xantonas/química , Xantonas/aislamiento & purificación
5.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946414

RESUMEN

There is growing evidence that repurposed drugs demonstrate excellent efficacy against many cancers, while facilitating accelerated drug development process. In this study, bedaquiline (BDQ), an FDA approved anti-mycobacterial agent, was repurposed and an inhalable cyclodextrin complex formulation was developed to explore its anti-cancer activity in non-small cell lung cancer (NSCLC). A sulfobutyl ether derivative of ß-cyclodextrin (SBE-ß-CD) was selected based on phase solubility studies and molecular modeling to prepare an inclusion complex of BDQ and cyclodextrin. Aqueous solubility of BDQ was increased by 2.8 × 103-fold after complexation with SBE-ß-CD, as compared to its intrinsic solubility. Solid-state characterization studies confirmed the successful incorporation of BDQ in the SBE-ß-CD cavity. In vitro lung deposition study results demonstrated excellent inhalable properties (mass median aerodynamic diameter: 2.9 ± 0.6 µm (<5 µm) and fine particle fraction: 83.3 ± 3.8%) of BDQ-CD complex. Accelerated stability studies showed BDQ-CD complex to be stable up to 3 weeks. From cytotoxicity studies, a slight enhancement in the anti-cancer efficacy was observed with BDQ-cyclodextrin complex, compared to BDQ alone in H1299 cell line. The IC50 values for BDQ and BDQ-CD complex were found to be ~40 µM in case of H1299 cell line at 72 h, whereas BDQ/BDQ-CD were not found to be cytotoxic up to concentrations of 50 µM in A549 cell line. Taken together, BDQ-CD complex offers a promising inhalation strategy with efficient lung deposition and cytotoxicity for NSCLC treatment.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Diarilquinolinas/administración & dosificación , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamiento farmacológico , beta-Ciclodextrinas/química , Células A549 , Administración por Inhalación , Antibióticos Antineoplásicos/farmacología , Antituberculosos/administración & dosificación , Antituberculosos/farmacología , Línea Celular Tumoral , Diarilquinolinas/farmacología , Reposicionamiento de Medicamentos , Humanos , Modelos Moleculares
7.
AAPS PharmSciTech ; 21(5): 181, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32607628

RESUMEN

Cocrystals have gained a lot of consideration regarding its superior role in enhancement of solubility and dissolution of the included API. Cocrystals could be converted to coamorphous systems via different techniques like milling and quench cooling; however, the use of spray-drying technique has not been investigated before. So, the aim of this study was to explore the effect of spray drying on the amorphization of indomethacin/nicotinamide, INDNIC, as model cocrystals. Spray-drying operating parameters were optimized using the Taguchi design of experiment for maximum powder yield and low moisture content. The obtained INDNIC spray-dried cocrystals were characterized for their degree of crystallinity, morphology, moisture content, and dissolution performance. In addition, stability study was performed at different temperature and humidity conditions. Experimental design results delineate that spray-drying inlet temperature and cocrystal concentrations as the most influential factors for maximum powder yield and low moisture content. Powder X-ray diffraction and differential scanning calorimetry studies revealed the conversion of INDNIC cocrystals to a partial coamorphous or coamorphous structure without dissociation of INDNIC molecular structure. INDNIC coamorphous powders showed a significantly higher release of IND compared with cocrystals and remain physically stable for 2 months when stored in the refrigerator.


Asunto(s)
Desecación/métodos , Estabilidad de Medicamentos , Indometacina/química , Niacinamida/química , Rastreo Diferencial de Calorimetría , Composición de Medicamentos/métodos , Estructura Molecular , Polvos/química , Solubilidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...