Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Methods Protoc ; 7(1): bpab020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036571

RESUMEN

The ability to visualize cell and tissue morphology at a high magnification using scanning electron microscopy (SEM) has revolutionized plant sciences research. In plant-insect interactions studies, SEM-based imaging has been of immense assistance to understand plant surface morphology including trichomes [plant hairs; physical defense structures against herbivores], spines, waxes, and insect morphological characteristics such as mouth parts, antennae, and legs, that they interact with. While SEM provides finer details of samples, and the imaging process is simpler now with advanced image acquisition and processing, sample preparation methodology has lagged. The need to undergo elaborate sample preparation with cryogenic freezing, multiple alcohol washes, and sputter coating makes SEM imaging expensive, time consuming, and warrants skilled professionals, making it inaccessible to majority of scientists. Here, using a desktop version of SEM (SNE- 4500 Plus Tabletop), we show that the "plug and play" method can efficiently produce SEM images with sufficient details for most morphological studies in plant-insect interactions. We used leaf trichomes of Solanum genus as our primary model, and oviposition by tobacco hornworm (Manduca sexta; Lepidoptera: Sphingidae) and fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae), and leaf surface wax imaging as additional examples to show the effectiveness of this instrument and present a detailed methodology to produce the best results with this instrument. While traditional sample preparation can still produce better resolved images with less distortion, we show that even at a higher magnification, the desktop SEM can deliver quality images. Overall, this study provides detailed methodology with a simpler "no sample preparation" technique for scanning fresh biological samples without the use of any additional chemicals and machinery.

2.
Plant Signal Behav ; 16(11): 1964163, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34384043

RESUMEN

Silverleaf nightshade (Solanum elaeagnifolium) is a highly successful invasive weed that has caused agricultural losses both in its home and invaded ranges. Surveying 50 sub-populations over 36,000 km2 in its native range in South Texas, we investigated the interactions among soil type, population size, plant height, herbivory, and plant defenses in its home range with the expectation that populations growing in the plant's preferred sandier soils would host larger colonies of healthier and better defended plants. At each sampling location, on randomly selected plants, we measured height, insect herbivore damage, and presence, and density of internode spines. Soil type was determined using the NRCS Web Soil Survey and primarily grouped into sand, clay, or urban. Our results show a tradeoff between growth and defense with larger colonies and taller plants in clay soils, but smaller colonies of shorter, spinier plants in sandy soils. We also observed decreased herbivory in urban soils, further confirming the plant's ability to survive and even be strengthened by highly disturbed conditions. This study is a starting point for a better understanding of silverleaf nightshade's ecology in its home range and complicates the assumption that it thrives best in sandy soils.


Asunto(s)
Adaptación Fisiológica , Especies Introducidas , Defensa de la Planta contra la Herbivoria/fisiología , Suelo/química , Solanum/anatomía & histología , Solanum/crecimiento & desarrollo , Solanum/parasitología , Herbivoria , Malezas/anatomía & histología , Malezas/crecimiento & desarrollo , Malezas/parasitología , Texas
3.
Sci Rep ; 11(1): 6634, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33758235

RESUMEN

The role of disturbance in accelerating weed growth is well understood. While most studies have focused on soil mediated disturbance, mowing can also impact weed traits. Using silverleaf nightshade (Solanum elaeagnifolium), a noxious and invasive weed, through a series of field, laboratory, and greenhouse experiments, we asked whether continuous mowing influences growth and plant defense traits, expressed via different avenues, and whether they cascade into offspring. We found that mowed plants produced significantly less number of fruits, and less number of total seeds per plant, but had higher seed mass, and germinated more and faster. When three herbivores were allowed to feed, tobacco hornworm (Manduca sexta) caterpillars, gained more mass on seedlings from unmowed plants, while cow pea aphid (Aphis craccivora), a generalist, established better on mowed seedlings; however, leaf trichome density was higher on unmowed seedlings, suggesting possible negative cross talk in defense traits. Texas potato beetle (Leptinotarsa texana), a co-evolved specialist on S. elaeagnifolium, did not show any differential feeding effects. We also found that specific root length, an indicator of nutrient acquisition, was significantly higher in first generation seedlings from mowed plants. Taken together, we show that mowing is a selective pressure that enhances some fitness and defense traits and can contribute to producing superweeds.


Asunto(s)
Adaptación Fisiológica , Desarrollo de la Planta , Malezas , Solanum , Aclimatación , Herbivoria , Especies Introducidas , Carácter Cuantitativo Heredable , Semillas
4.
BMC Ecol ; 20(1): 8, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039719

RESUMEN

BACKGROUND: Breeding programs and research activities where artificial buzz-pollinations are required to have primarily relied upon using tuning forks, and bumble bees. However, these methods can be expensive, unreliable, and inefficient. To find an alternative, we tested the efficiency of pollen collection using electric toothbrushes and compared it with tuning forks at three vibration frequencies-low, medium, and high and two extraction times at 3 s and 16 s- from two buzz-pollinated species (Solanum lycopersicum and Solanum elaeagnifolium). RESULTS: Our results show that species, and extraction time significantly influenced pollen extraction, while there were no significant differences for the different vibration frequencies and more importantly, the use of a toothbrush over tuning fork. More pollen was extracted from S. elaeagnifolium when compared to S. lycopersicum, and at longer buzzing time regardless of the instrument used. CONCLUSIONS: Our results suggest that electric toothbrushes can be a viable and inexpensive alternative to tuning forks, and regardless of the instrument used and buzzing frequency, length of buzzing time is also critical in pollen extraction.


Asunto(s)
Polinización , Solanum lycopersicum , Animales , Abejas , Flores , Polen
5.
Data Brief ; 19: 2348-2351, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30229109

RESUMEN

In this data article, we provide a novel data set on plant growth, insect damage levels, and herbivore community of the noxious and invasive weed Solanum eleaegnifolium (Solanaceae). The data is collected from disturbed and un-disturbed urban populations of the species from one of its unexplored native range in Southern United States (South Texas). The data include plant height measurements, insect damage levels, GPS coordinates of the populations, and their disturbance status. Additional data includes the number of chewing herbivore (specialist herbivore Texas potato beetle (Leptinotarsa texana; Chrysomelidae), their eggs, and any lepidopteran caterpillars found on the plants.

6.
Bio Protoc ; 8(16): e2967, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34395772

RESUMEN

Insect pollinators, herbivores and their natural enemies use olfactory cues emitted by their host plants to locate them. In insect-plant ecology, understanding the mechanisms underlying these interactions are of critical importance, as this bio-communication has both ecological and agricultural applications. However, the first step in such research is to identify and quantify the insect community associated with the plant/s species of interest. Traditionally, this has been accomplished by a variety of insect trapping methods, either using pitfall traps, or sticky traps, or sweep nets in field. The data collected from these traps tend to be incomplete, and also damage the specimens, making them unusable for any taxonomic purposes. This protocol derives ideas from these traditional traps and use a combination of three easily made inexpensive modified traps that conceals the host plant, but allows the plant volatiles to pass through as olfactory cues. These traps are economical, can be made to fit with most plant sizes, and are also reusable. Collectively, these traps will provide a solid estimate (quantifiable) of all associated community of arthropods that can also be stored for future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...