Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nutrients ; 15(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37960280

RESUMEN

Among the many factors affecting general health and resilience to disease, lifestyle is at the same time the most controllable and the most influential factor [...].


Asunto(s)
Ejercicio Físico , Estilo de Vida Saludable , Humanos , Dieta , Sueño , Enfermedad Crónica
2.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686468

RESUMEN

Both FoxO transcription factors and the circadian clock act on the interface of metabolism and cell cycle regulation and are important regulators of cellular stress and stem cell homeostasis. Importantly, FoxO3 preserves the adult neural stem cell population by regulating cell cycle and cellular metabolism and has been shown to regulate circadian rhythms in the liver. However, whether FoxO3 is a regulator of circadian rhythms in neural stem cells remains unknown. Here, we show that loss of FoxO3 disrupts circadian rhythmicity in cultures of neural stem cells, an effect that is mediated via regulation of Clock transcriptional levels. Using Rev-Erbα-VNP as a reporter, we then demonstrate that loss of FoxO3 does not disrupt circadian rhythmicity at the single cell level. A meta-analysis of published data revealed dynamic co-occupancy of multiple circadian clock components within FoxO3 regulatory regions, indicating that FoxO3 is a Clock-controlled gene. Finally, we examined proliferation in the hippocampus of FoxO3-deficient mice and found that loss of FoxO3 delayed the circadian phase of hippocampal proliferation, indicating that FoxO3 regulates correct timing of NSC proliferation. Taken together, our data suggest that FoxO3 is an integral part of circadian regulation of neural stem cell homeostasis.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Proteína Forkhead Box O3 , Células-Madre Neurales , Animales , Ratones , Ciclo Celular , División Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/fisiología
3.
PLoS Comput Biol ; 19(9): e1011499, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37729340

RESUMEN

Over the last decade, genome-scale metabolic models have been increasingly used to study plant metabolic behaviour at the tissue and multi-tissue level under different environmental conditions. Quercus suber, also known as the cork oak tree, is one of the most important forest communities of the Mediterranean/Iberian region. In this work, we present the genome-scale metabolic model of the Q. suber (iEC7871). The metabolic model comprises 7871 genes, 6231 reactions, and 6481 metabolites across eight compartments. Transcriptomics data was integrated into the model to obtain tissue-specific models for the leaf, inner bark, and phellogen, with specific biomass compositions. The tissue-specific models were merged into a diel multi-tissue metabolic model to predict interactions among the three tissues at the light and dark phases. The metabolic models were also used to analyse the pathways associated with the synthesis of suberin monomers, namely the acyl-lipids, phenylpropanoids, isoprenoids, and flavonoids production. The models developed in this work provide a systematic overview of the metabolism of Q. suber, including its secondary metabolism pathways and cork formation.


Asunto(s)
Quercus , Quercus/genética , Quercus/metabolismo , Metabolismo Secundario , Lípidos , Madera/genética
4.
J Biol Rhythms ; 38(5): 476-491, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37357746

RESUMEN

Epidemiological studies associate night shift work with increased breast cancer risk. However, the underlying mechanisms are not clearly understood. To better understand these mechanisms, animal models that mimic the human situation of different aspects of shift work are needed. In this study, we used "timed sleep restriction" (TSR) cages to simulate clockwise and counterclockwise rotating shift work schedules and investigated predicted sleep patterns and mammary tumor development in breast tumor-prone female p53R270H©/+WAPCre mice. We show that TSR cages are effective in disturbing normal activity and estimated sleep patterns. Although circadian rhythms were not shifted, we observed effects of the rotating schedules on sleep timing and sleep duration. Sleep loss during a simulated shift was partly compensated after the shift and also partly during the free days. No effects were observed on body weight gain and latency time of breast cancer development. In summary, our study shows that the TSR cages can be used to model shift work in mice and affect patterns of activity and sleep. The effect of disturbing sleep patterns on carcinogenesis needs to be further investigated.


Asunto(s)
Neoplasias , Horario de Trabajo por Turnos , Humanos , Ratones , Femenino , Animales , Proteína p53 Supresora de Tumor/genética , Ritmo Circadiano , Sueño , Modelos Animales de Enfermedad , Tolerancia al Trabajo Programado
5.
Sci Rep ; 12(1): 2022, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35132155

RESUMEN

Night shift work is associated with increased health risks. Here we examined the association of metabolic risk factors and immune cell counts, with both night shift work and particular characteristics thereof: frequency, duration and consecutive night shifts. We performed a cross-sectional study using data from 10,201 non-shift workers and 1062 night shift workers of the Lifelines Cohort study. Linear regression analyses, adjusted for demographic, lifestyle and occupational factors, were used to study associations of night shift work characteristics with metabolic risk factors and immune cell counts. Night shift workers had an increased BMI, waist circumference and immune cell counts compared to non-shift workers. This was especially seen in night shift workers who had a higher frequency of night shifts per month (≥ 5: BMI: B = 0.81 kg/m2 (95%-CI = 0.43-1.10); waist circumference: B = 1.58 cm (95%-Cl = 0.34-1.71; leukocytes: B = 0.19 × 109 cells/L (95%-CI = 0.04-0.34 × 109)) and worked more consecutive night shifts (> 3: BMI: B = 0.92 kg/m2 (95%-CI = 0.41-1.43); waist circumference: B = 1.85 cm (95%-Cl = 0.45-3.24); leukocytes: B = 0.32 × 109 cells/L (95%-CI = 0.09-0.55 × 109)). This association was less pronounced in long-term night shift workers (≥ 20 years). Our findings provide evidence for the association between night shift work characteristics and BMI, waist circumference and leukocytes (including, monocytes, lymphocytes, and basophil granulocytes).


Asunto(s)
Inmunidad Celular , Recuento de Leucocitos , Salud Laboral , Horario de Trabajo por Turnos/efectos adversos , Tolerancia al Trabajo Programado/fisiología , Índice de Masa Corporal , Estudios de Cohortes , Estudios Transversales , Factores de Riesgo , Factores de Tiempo , Circunferencia de la Cintura
6.
J Sleep Res ; 31(2): e13496, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34617358

RESUMEN

This protocol describes an innovative study to investigate the relationship between sleep, shift work and the immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; coronavirus disease 2019 [COVID-19]) vaccination. As the COVID-19 pandemic is a global crisis with devastating health, social and economic impacts, there is a pressing need for effective vaccination programmes. Previous influenza and hepatitis vaccination studies suggest that lack of sleep can negatively alter immune responsiveness, while circadian misalignment most likely may also play an important role in the immune response to vaccination. Our present study will be the first to address this question in actual shift workers and in relation to COVID-19 vaccination. We hypothesise that the occurrence of recent night shifts and diminished sleep will negatively alter the immune response to vaccination in shift workers compared to dayworkers. We aim to recruit 50 shift workers and 50 dayworkers. Participants will receive an mRNA-based vaccination, through the Dutch vaccination programme. To assess immune responsiveness, blood will be drawn at baseline (before first vaccination), 10 days after first vaccination, the day prior to the second vaccination; and 28 days, 6 and 12 months after the second vaccination. Actigraphy and daily sleep e-diaries will be implemented for 7 days around each vaccination to assess sleep. The Pittsburgh Sleep Quality Index will be used to monitor sleep in the long term. Optimising the efficacy of the COVID-19 vaccines is of outmost importance and results of this study could provide insights to develop sleep and circadian-based interventions to enhance vaccination immunity, and thereby improve global health.


Asunto(s)
COVID-19 , Horario de Trabajo por Turnos , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad , Pandemias/prevención & control , SARS-CoV-2 , Sueño
7.
Nutrients ; 13(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960096

RESUMEN

The term social jetlag is used to describe the discrepancy between biological time, determined by our internal body clock, and social times, mainly dictated by social obligations such as school or work. In industrialized countries, two-thirds of the studying/working population experiences social jetlag, often for several years. Described for the first time in 2006, a considerable effort has been put into understanding the effects of social jetlag on human physiopathology, yet our understanding of this phenomenon is still very limited. Due to its high prevalence, social jetlag is becoming a primary concern for public health. This review summarizes current knowledge regarding social jetlag, social jetlag associated behavior (e.g., unhealthy eating patterns) and related risks for human health.


Asunto(s)
Trastornos Cronobiológicos/fisiopatología , Trastornos Cronobiológicos/psicología , Ritmo Circadiano/fisiología , Salud , Trastornos Cronobiológicos/etiología , Conducta Alimentaria , Femenino , Humanos , Conocimiento , Estilo de Vida , Masculino , Salud Pública , Riesgo , Instituciones Académicas , Sueño , Conducta Social , Factores de Tiempo , Trabajo
8.
Mass Spectrom Rev ; 40(2): 126-157, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31498921

RESUMEN

Research in forest tree species has advanced slowly when compared with other agricultural crops and model organisms, mainly due to the long-life cycles, large genome sizes, and lack of genomic tools. Additionally, trees are complex matrices, and the presence of interferents (e.g., oleoresins and cellulose) challenges the analysis of tree tissues with mass spectrometry (MS)-based analytical platforms. In this review, advances in MS-based forest tree metabolomics are discussed. Given their economic and ecological significance, particular focus is given to Pinus, Quercus, and Eucalyptus forest tree species to better understand their metabolite responses to abiotic and biotic stresses in the current climate change scenario. Furthermore, MS-based metabolomics technologies produce large and complex datasets that require expertize to adequately manage, process, analyze, and store the data in dedicated repositories. To ensure that the full potential of forest tree metabolomics data are translated into new knowledge, these data should comply with the FAIR principles (i.e., Findable, Accessible, Interoperable, and Re-usable). It is essential that adequate standards are implemented to annotate metadata from forest tree metabolomics studies as is already required by many science and governmental agencies and some major scientific publishers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev 40:126-157, 2021.


Asunto(s)
Espectrometría de Masas/métodos , Metabolómica/métodos , Árboles/metabolismo , Eucalyptus/química , Eucalyptus/genética , Eucalyptus/metabolismo , Bosques , Genómica/métodos , Metaboloma , Pinus/química , Pinus/genética , Pinus/metabolismo , Quercus/química , Quercus/genética , Quercus/metabolismo , Estrés Fisiológico , Árboles/química , Árboles/genética
9.
Plant Cell Environ ; 44(3): 706-728, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33314160

RESUMEN

An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.


Asunto(s)
MicroARNs/metabolismo , Pinus/metabolismo , ARN de Planta/metabolismo , Deshidratación , Genes de Plantas/genética , MicroARNs/genética , Pinus/crecimiento & desarrollo , Pinus/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , ARN de Planta/genética , Transcriptoma
10.
Database (Oxford) ; 20202020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-33382885

RESUMEN

Quercus suber (cork oak) is an evergreen tree native to the Mediterranean basin, which plays a key role in the ecology and economy of this area. Over the last decades, this species has gone through an observable decline, mostly due to environmental factors. Deciphering the mechanisms of cork oak's response to the environment and getting a deep insight into its biology are crucial to counteract biotic and abiotic stresses compromising the stability of a unique ecosystem. In the light of these setbacks, the publication of the genome in 2018 was a major step towards understanding the genetic make-up of this species. In an effort to integrate this information in a comprehensive, accessible and intuitive format, we have developed The Cork Oak Genome Database Portal (CorkOakDB). The CorkOakDB is supported by the BioData.pt e-infrastructure, the Portuguese ELIXIR node for biological data. The portal gives public access to search and explore the curated genomic and transcriptomic data on this species. Moreover, CorkOakDB provides a user-friendly interface and functional tools to help the research community take advantage of the increased accessibility to genomic information. A study case is provided to highlight the functionalities of the portal. CorkOakDB guarantees the update, curation and data collection, aiming to collect data besides the genetic/genomic information, in order to become the main repository in cork oak research. Database URL: http://corkoakdb.org/.


Asunto(s)
Quercus , Ecosistema , Quercus/genética , Transcriptoma , Árboles
11.
Nutrients ; 12(8)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759654

RESUMEN

BACKGROUND: Breastfeeding is considered the most optimal mode of feeding for neonates and mothers. Human milk changes over the course of lactation in order to perfectly suit the infant's nutritional and immunological needs. Its composition also varies throughout the day. Circadian fluctuations in some bioactive components are suggested to transfer chronobiological information from mother to child to assist the development of the biological clock. This review aims to give a complete overview of studies examining human milk components found to exhibit circadian variation in their concentration. METHODS: We included studies assessing the concentration of a specific human milk component more than once in 24 h. Study characteristics, including gestational age, lactational stage, sampling strategy, analytical method, and outcome were extracted. Methodological quality was graded using a modified Newcastle-Ottawa Scale (NOS). RESULTS: A total of 83 reports assessing the circadian variation in the concentration of 71 human milk components were included. Heterogeneity among studies was high. The methodological quality varied widely. Significant circadian variation is found in tryptophan, fats, triacylglycerol, cholesterol, iron, melatonin, cortisol, and cortisone. This may play a role in the child's growth and development in terms of the biological clock.


Asunto(s)
Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Fenómenos Fisiológicos Nutricionales del Lactante , Lactancia/fisiología , Leche Humana/química , Adulto , Lactancia Materna , Femenino , Humanos , Lactante , Recién Nacido , Masculino
12.
J Mol Biol ; 432(12): 3515-3524, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32304699

RESUMEN

Circadian control of cell division is well established in diverse organisms. Recent single-cell studies on mouse fibroblasts have shown that the circadian clock and cell cycle systems are robustly phase-coupled in a bidirectional manner. In healthy cells, coupling of clock and cell cycle results in timed mitosis and rhythmic DNA replication. However, little is known about the interplay between these two oscillators in cancer cells, which often display de-regulated cell proliferation and circadian gene expression. Here we review the molecular organization of the circadian clock and the cell cycle, as well as the reciprocal interaction between the circadian clock and the cell cycle in normal and in cancer cells. Understanding how the circadian clock and cell cycle are coupled in cancer cells will be instrumental to optimally take advantage of chronotherapy in cancer treatment, as efficiency of therapy benefits from asynchrony in timed mitosis between the host and the malignant cells in order to predict the optimal time of treatment.


Asunto(s)
Ciclo Celular/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mitosis/genética , Animales , Proliferación Celular/genética , Replicación del ADN/genética , Humanos , Ratones , Análisis de la Célula Individual
13.
Front Plant Sci ; 11: 309, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32265962

RESUMEN

Epidemics of coffee leaf rust (CLR) leads to great yield losses and huge depreciation of coffee marketing values, if no control measures are applied. Societal expectations of a more sustainable coffee production are increasingly imposing the replacement of fungicide treatments by alternative solutions. A protection strategy is to take advantage of the plant immune system by eliciting constitutive defenses. Based on such concept, plant resistance inducers (PRIs) have been developed. The Greenforce CuCa formulation, similarly to acibenzolar-S-methyl (ASM), shows promising results in the control of CLR (Hemileia vastatrix) in Coffea arabica cv. Mundo Novo. The molecular mechanisms of PRIs action are poorly understood. In order to contribute to its elucidation a proteomic, physiological (leaf gas-exchange) and biochemical (enzymatic) analyses were performed. Coffee leaves treated with Greenforce CuCa and ASM and inoculation with H. vastatrix were considered. Proteomics revealed that both PRIs lead to metabolic adjustments but, inducing distinct proteins. These proteins were related with photosynthesis, protein metabolism and stress responses. Greenforce CuCa increased photosynthesis and stomatal conductance, while ASM caused a decrease in these parameters. It was further observed that Greenforce CuCa reinforces the redox homeostasis of the leaf, while ASM seems to affect preferentially the secondary metabolism and the stress-related proteins. So, the PRIs prepare the plant to resist CLR but, inducing different defense mechanisms upon pathogen infection. The existence of a link between the primary metabolism and defense responses was evidenced. The identification of components of the plant primary metabolism, essential for plant growth and development that, simultaneously, participate in the plant defense responses can open new perspectives for plant breeding programs.

14.
New Phytol ; 227(1): 260-273, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32171029

RESUMEN

Enabling data reuse and knowledge discovery is increasingly critical in modern science, and requires an effort towards standardising data publication practices. This is particularly challenging in the plant phenotyping domain, due to its complexity and heterogeneity. We have produced the MIAPPE 1.1 release, which enhances the existing MIAPPE standard in coverage, to support perennial plants, in structure, through an explicit data model, and in clarity, through definitions and examples. We evaluated MIAPPE 1.1 by using it to express several heterogeneous phenotyping experiments in a range of different formats, to demonstrate its applicability and the interoperability between the various implementations. Furthermore, the extended coverage is demonstrated by the fact that one of the datasets could not have been described under MIAPPE 1.0. MIAPPE 1.1 marks a major step towards enabling plant phenotyping data reusability, thanks to its extended coverage, and especially the formalisation of its data model, which facilitates its implementation in different formats. Community feedback has been critical to this development, and will be a key part of ensuring adoption of the standard.


Asunto(s)
Fenómica , Plantas , Plantas/genética
15.
Tree Physiol ; 40(2): 129-141, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31860724

RESUMEN

Cork cambium (or phellogen) is a secondary meristem responsible for the formation of phelloderm and phellem/cork, which together compose the periderm. In Quercus suber L., the phellogen is active throughout the entire life of the tree, producing a continuous and renewable outer bark of cork. To identify specific candidate genes associated with cork cambium activity and phellem differentiation, we performed a comparative transcriptomic study of Q. suber secondary growth tissues (xylem and phellogen/phellem) using RNA-seq. The present work provides a high-resolution map of all the transcripts identified in the phellogen/phellem tissues. A total of 6013 differentially expressed genes were identified, with 2875 of the transcripts being specifically enriched during the cork formation process versus secondary xylem formation. Furthermore, cork samples originating from the original phellogen (`virgin' cork) and from a traumatic phellogen (`amadia' cork) were also compared. Our results point to a shortlist of potentially relevant candidate genes regulating phellogen activity and phellem differentiation, including novel genes involved in the suberization process, as well as genes associated to ethylene and jasmonate signaling and to meristem function. The future functional characterization of some of the identified candidate genes will help to elucidate the molecular mechanisms underlying cork cambium activity and phellem differentiation.


Asunto(s)
Quercus/genética , Cámbium/genética , Perfilación de la Expresión Génica , Transcriptoma , Xilema/genética
16.
Sci Rep ; 9(1): 11327, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383905

RESUMEN

Regulation of seed development by small non-coding RNAs (sRNAs) is an important mechanism controlling a crucial phase of the life cycle of seed plants. In this work, sRNAs from seed tissues (zygotic embryos and megagametophytes) and from somatic embryos of Pinus pinaster were analysed to identify putative regulators of seed/embryo development in conifers. In total, sixteen sRNA libraries covering several developmental stages were sequenced. We show that embryos and megagametophytes express a large population of 21-nt sRNAs and that substantial amounts of 24-nt sRNAs were also detected, especially in somatic embryos. A total of 215 conserved miRNAs, one third of which are conifer-specific, and 212 high-confidence novel miRNAs were annotated. MIR159, MIR171 and MIR394 families were found in embryos, but were greatly reduced in megagametophytes. Other families, like MIR397 and MIR408, predominated in somatic embryos and megagametophytes, suggesting their expression in somatic embryos is associated with in vitro conditions. Analysis of the predicted miRNA targets suggests that miRNA functions are relevant in several processes including transporter activity at the cotyledon-forming stage, and sulfur metabolism across several developmental stages. An important resource for studying conifer embryogenesis is made available here, which may also provide insightful clues for improving clonal propagation via somatic embryogenesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus/genética , Semillas/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Pinus/crecimiento & desarrollo , ARN de Planta/genética , Semillas/crecimiento & desarrollo
17.
iScience ; 13: 284-304, 2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30875610

RESUMEN

The circadian clock and the hypoxia-signaling pathway are regulated by an integrated interplay of positive and negative feedback limbs that incorporate energy homeostasis and carcinogenesis. We show that the negative circadian regulator CRY1 is also a negative regulator of hypoxia-inducible factor (HIF). Mechanistically, CRY1 interacts with the basic-helix-loop-helix domain of HIF-1α via its tail region. Subsequently, CRY1 reduces HIF-1α half-life and binding of HIFs to target gene promoters. This appeared to be CRY1 specific because genetic disruption of CRY1, but not CRY2, affected the hypoxia response. Furthermore, CRY1 deficiency could induce cellular HIF levels, proliferation, and migration, which could be reversed by CRISPR/Cas9- or short hairpin RNA-mediated HIF knockout. Altogether, our study provides a mechanistic explanation for genetic association studies linking a disruption of the circadian clock with hypoxia-associated processes such as carcinogenesis.

18.
Chronobiol Int ; 36(5): 657-671, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30793958

RESUMEN

Circadian rhythm disturbance (CRD) increases the risk of disease, e.g. metabolic syndrome, cardiovascular disease, and cancer. In the present study, we investigated later life adverse health effects triggered by repeated jet lag during gestation. Pregnant mice were subjected to a regular light-dark cycle (CTRL) or to a repeated delay (DEL) or advance (ADV) jet lag protocol. Both DEL and ADV offspring showed reduced weight gain. ADV offspring had an increased circadian period, and an altered response to a jet lag was observed in both DEL and ADV offspring. Analysis of the bones of adult male ADV offspring revealed reduced cortical bone mass and strength. Strikingly, analysis of the heart identified structural abnormalities and impaired heart function. Finally, DNA methylation analysis revealed hypermethylation of miR17-92 cluster and differential methylation within circadian clock genes, which correlated with altered gene expression. We show that developmental CRD affects the circadian system and predisposes to non-communicable disease in adult life.


Asunto(s)
Enfermedades Óseas/etiología , Ritmo Circadiano/fisiología , Cardiopatías/etiología , Síndrome Jet Lag , Trastornos del Sueño del Ritmo Circadiano/fisiopatología , Animales , Relojes Circadianos/fisiología , Modelos Animales de Enfermedad , Femenino , Genotipo , Síndrome Jet Lag/fisiopatología , Ratones Endogámicos C57BL , Fotoperiodo , Embarazo
19.
Prog Neurobiol ; 173: 41-53, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29886147

RESUMEN

Neural stem cells persist in the adult central nervous system as a continuing source of astrocytes, oligodendrocytes and neurons. Various signalling pathways and transcription factors actively maintain this population by regulating cell cycle entry and exit. Similarly, the circadian clock is interconnected with the cell cycle and actively maintains stem cell populations in various tissues. Here, we discuss emerging evidence for an important role of the circadian clock in neural stem cell maintenance. We propose that the NAD+-dependent deacetylase SIRT1 exerts control over the circadian clock in adult neural stem cell function to limit exhaustion of their population. Conversely, disruption of the circadian clock may compromise neural stem cell quiescence resulting in a premature decline of the neural stem cell population. As such, energy metabolism and the circadian clock converge in adult neural stem cell maintenance.


Asunto(s)
Células Madre Adultas/fisiología , Relojes Circadianos/fisiología , Células-Madre Neurales/fisiología , Animales , Proliferación Celular/fisiología , Humanos
20.
Cell Cycle ; 18(1): 16-33, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30558467

RESUMEN

We previously identified a tight bidirectional phase coupling between the circadian clock and the cell cycle. To understand the role of the CLOCK/BMAL1 complex, representing the main positive regulator of the circadian oscillator, we knocked down Bmal1 or Clock in NIH3T33C mouse fibroblasts (carrying fluorescent reporters for clock and cell cycle phase) and analyzed timing of cell division in individual cells and cell populations. Inactivation of Bmal1 resulted in a loss of circadian rhythmicity and a lengthening of the cell cycle, originating from delayed G2/M transition. Subsequent molecular analysis revealed reduced levels of Cyclin B1, an important G2/M regulator, upon suppression of Bmal1 gene expression. In complete agreement with these experimental observations, simulation of Bmal1 knockdown in a computational model for coupled mammalian circadian clock and cell cycle oscillators (now incorporating Cyclin B1 induction by BMAL1) revealed a lengthening of the cell cycle. Similar data were obtained upon knockdown of Clock gene expression. In conclusion, the CLOCK/BMAL1 complex controls cell cycle progression at the level of G2/M transition through regulation of Cyclin B1 expression.


Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Ciclina B1/genética , Animales , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...