Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 14(47): 4967-4976, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36441195

RESUMEN

In water treatment plants (WTPs), chemical agents, such as chlorine and ozone, might react with organic matter and anthropogenic contaminants, forming a high diversity of disinfection by-products (DBPs). Due to the potential toxicological effects, the identification of unregulated DBPs (UR-DBPs) is critical to help water managers in the selection of effective water treatment processes, contributing to improving water safety plans. Given the limited validated analytical methods to detect UR-DBPs, here we developed new multi-residue gas chromatography coupled with mass spectrometry methodologies for the detection and quantification of 15 UR-DBPs, including aldehydes, haloketones (HKs), nitrosamines and alcohols, in drinking water matrices. Solid-phase extraction (SPE), for the nitrosamine group, and solid-phase micro extraction (SPME), for the remaining DBPs, were used as sample preparation methods. The developed methodologies allowed the quantification of target UR-DBPs at trace concentration levels (ng L-1), with method quantification limits (MQLs) ranging from 14.4 ng L-1 to 26.0 ng L-1 (SPE-GC-MS) and 2.3 ng L-1 and 1596 ng L-1 (SPME-GC-MS). The methods were applied to different drinking water matrices, considering distinct delivery points of EPAL - Empresa Portuguesa das Águas Livres WTPs. Overall, the aldehyde group, represented by decanal, nonanal and 2-ethylheaxanal, showed the highest occurrence, followed by HKs and nitrosamines. The results of this study suggested that the formation of these UR-DBPs should be further monitored in WTPs.


Asunto(s)
Agua Potable , Purificación del Agua , Cromatografía de Gases , Espectrometría de Masas
2.
Environ Manage ; 69(1): 111-127, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859264

RESUMEN

Water quality monitoring is a fundamental tool in the management of freshwater resources. The purpose of monitoring is to provide meaningful quality data for local action planning and catchment-wide decision making. The assessment of water quality is crucial to guarantee the efficient operation of the Water Treatment Plants (WTPs), promoting health conditions and contributing for a more sustainable urban water cycle. In accordance, the objective of this study was to evaluate key target chemical and microbiological water quality parameters, some of them already monitored within Portuguese/EU legal framework and others still not regulated, but with environmental and human heath relevance. A local monitoring database model, using a 6-year period (from 2014 to 2019) of water quality data, regarding water samples collected on representative sampling locations covering the freshwater abstraction sites, conventional WTPs and distribution network was assessed. This work provides new knowledge regarding occurrence and seasonal behaviour for both microbiological and chemical water quality parameters, essential to understand/manage the water supply system. Additionally, relationships between the target variables were also assessed. Particularly, strong correlations were identified between TOC and THMs formation at distribution network (r = 0.69; p ≤ 0.001); nitrates were the water quality parameter that revealed the best correlation between surface water source and treated water (r = 0.81; p ≤ 0.001), suggesting that treatment yield/performance is dependent on surface water load. The local and continuous monitoring of water systems are crucial to implement new approaches to guarantee the best quality of drinking water throughout the supply system.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Monitoreo del Ambiente , Humanos , Portugal , Estaciones del Año , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Abastecimiento de Agua
3.
Sci Total Environ ; 742: 140522, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623170

RESUMEN

Disinfection By-products (DBPs) are formed during the chemical treatment of water for human consumption, by the reaction of raw water with chemical agents used in the different steps of the process. Disinfection is one of the most important steps, inactivating pathogens and preventing their regrowth during water distribution. However, it is also involved in DBPs formation due to the use of disinfectant agents, such as chlorine, which reacts with dissolved precursors, such as pharmaceuticals, toxins, pesticides, among others. Given their widespread occurrence, potential human health and (eco) toxicological impacts are of particular interest due to their potential carcinogenicity and various non-carcinogenic effects, such as endocrine disruption. In this study, the developmental toxicity of chemically- different unregulated DBPs was evaluated using zebrafish embryo bioassay. Embryos were exposed to different concentrations of the target DBPs and multiple endpoints, including, mortality, morphological abnormalities and locomotor behavior were assessed at specific developmental stages (24, 48, 72 and 96 hpf). The different families of DBPs tested included nitrosamines, aldehydes, alcohols and ketones. The results show that the effects were compound dependent, with EC10 values varying between 0.04 mg/L (2-ethyl-1-hexanal) to 9.2 mg/L (hexachloroacetone). Globally, several of the tested unregulated DBPs displayed higher toxicity when compared with the available data for some already regulated, such as trihalomethanes (THMs), which highlights the importance of screening the toxicity of still untested and poorly characterized DBPs.


Asunto(s)
Desinfectantes/análisis , Agua Potable , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Animales , Bioensayo , Desinfección , Humanos , Trihalometanos , Pez Cebra
4.
Artículo en Inglés | MEDLINE | ID: mdl-31136853

RESUMEN

Disinfection of water system is an essential strategy to protect human health from pathogens and prevent their regrowth during water distribution, but the reaction of disinfectant agents with organic matter can lead to the formation of disinfection by-products (DBPs). Given their widespread occurrence, potential human health impacts and (eco)toxicity associated with exposure to DBPs are of particular interest due to their potential carcinogenicity and vary non-carcinogenic effects, such as endocrine disruption. Understanding the public health implications of this emerging issue is crucial for societies and decision-makers, supporting more effective water safety plans. Here, we review the recent literature on the effects of DBPs presented in drinking water and treated swimming pools water, focusing particularly in unregulated compounds and the putative underlying mode of action, linking the available data with adverse health outcomes. Overall, the majority of studies highlight the limited knowledge in the understanding of the underlying mode of action of DBPs. Yet, available evidences indicate that different signaling pathways seem to be involved in the adverse outcomes associated with distinct DBPs classes. The main knowledge gaps in this field are also identified, and future research priorities discussed.


Asunto(s)
Desinfectantes/toxicidad , Desinfección/métodos , Purificación del Agua/métodos , Animales , Desinfectantes/química , Humanos , Medición de Riesgo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA