Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 15(7): 3759-65, 2007 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-19532621

RESUMEN

We demonstrate image amplification with a 19-pixel optical image amplifier array based on high gain per unit length Yb(3+)-doped phosphate glass optical fiber. The 19 pixels of the image amplifier provide spatially uniform image amplification whose gain can reach 30 dB/pixel or more with a fiber length of 10 cm. This image amplifier responds quickly to changes in the image position - with potential for GHz-level frame rates. This unique approach for image amplification offers low noise, high gain, and wide field of view in a compact fiber-based device.

2.
Opt Express ; 13(9): 3252-8, 2005 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-19495226

RESUMEN

For the first time in vivo retinal imaging has been performed with a new compact, low noise Yb-based ASE source operating in the 1 microm range (NP Photonics, lambdac = 1040 nm, Deltalambda = 50 nm, Pout = 30 mW) at the dispersion minimum of water with ~7 microm axial resolution. OCT tomograms acquired at 800 nm are compared to those achieved at 1040 nm showing about 200 microm deeper penetration into the choroid below the retinal pigment epithelium. Retinal OCT at longer wavelengths significantly improves the visualization of the retinal pigment epithelium/choriocapillaris/choroids interface and superficial choroidal layers as well as reduces the scattering through turbid media and therefore might provide a better diagnosis tool for early stages of retinal pathologies such as age related macular degeneration which is accompanied by choroidal neovascularization, i.e., extensive growth of new blood vessels in the choroid and retina.

3.
J Opt Soc Am A Opt Image Sci Vis ; 18(7): 1477-86, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11444539

RESUMEN

We present an experimental study on the diffraction of light by an aperture small compared with the wavelength. The aperture is illuminated by laser light guided in a metal-clad tapered optical fiber. We investigate different orientations of the aperture in the plane: normal to the cleaved plane, oblique to the cleaved plane, and off-center. We measure the far-field, two-dimensional intensity distributions of the diffracted light as functions of angle coordinates theta and phi in a full half-space for various polarization states and analyze the patterns by using low-order multipole fields. We also examine the near- and far-field effects of placing small periodic corrugations near the aperture, focusing on the role of surface-wave excitations. We measure the near-field intensity distributions near the aperture with a near-field scanning optical microscope and discuss their relation to the far-field diffracted fields.

4.
Opt Lett ; 25(3): 171-3, 2000 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18059819

RESUMEN

We experimentally and theoretically analyze the radiation emitted from subwavelength-sized apertures in near-field optical probes. By decomposing the experimentally obtained radiation patterns into vector spherical waves, we describe the fields in terms of a series of multipole sources. We fit polarization-resolved angular intensity distributions, measured as far as 150 degrees from the normal, with dipole, quadrupole, and octupole radiation. We find that the magnetic and the electric dipole components are dominant but that the interference terms between dipoles and higher-order poles are not negligible. This result can be used as the basis for understanding near-field optical interactions and images.

5.
J Microsc ; 194(Pt 2-3): 353-9, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-11388266

RESUMEN

Diffracted fields from 100-nm aperture near-field scanning optical microscopy (NSOM) probes and uncoated tapered fibres are measured and analysed. Using a solid angle scanner, the two-dimensional intensity distribution and polarization state of the diffracted light are resolved experimentally. Polarization analyses show that circularly polarized input light does not maintain its polarization state for all diffraction angles, and is completely filtered into linearly polarized light at large polar diffraction angles. This drastic decomposition originates from the vector nature of light diffracted by the sub-wavelength aperture. There is a fundamental difficulty in generating circularly polarized light near the aperture of NSOM probes owing to polarization-dependent diffraction in the near-field regime. This is illustrated by the Bethe-Bouwkamp model using circularly polarized input light.

6.
J Microsc ; 194(Pt 2-3): 421-5, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-11388279

RESUMEN

We solve numerically the three-dimensional vector form of Maxwell's equation for the situation of near-field excitation and collection of luminescence from a single quantum dot, using a scanning near-field optical fibre probe with subwavelength resolution. We highlight the importance of polarization-dependent effects in both the near-field excitation and collection processes. Applying a finite-difference time domain method, we calculate the complete vector fields emerging from a realistic probe structure which is in close proximity to a semiconductor surface. We model the photoluminescence from the quantum dot in terms of electric dipoles of different polarization directions, and determine the near-field luminescence images of the dot captured by the same probe. We show that a collimating effect in the high index semiconductor significantly improves the spatial resolution in the excitation-collection mode. We find that the spatial resolution, image shape and collection efficiency of near-field luminescence imaging strongly depend on the polarization direction as represented by the orientation of the radiating electric dipoles inside the quantum dot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...