Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 469: 134027, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508110

RESUMEN

Low-cost, low-energy extraction of heavy metal(loid)s (HMs) from hazardous gypsum cake is the goal of the metallurgical industry to mitigate environmental risks and carbon emissions. However, current extracting routes of hydrometallurgy often suffer from great energy inputs and substantial chemical inputs. Here, we report a novel solid-like approach with low energy consumption and chemical input to extract HMs by thin films under ambient conditions. Through constructing a nanoscale sulfuric acid film (NSF) of ∼50 nm thickness on the surface of arsenic-bearing gypsum (ABG), 99.6% of arsenic can be removed, surpassing the 50.3% removal in bulk solution. In-situ X-ray diffraction, infrared spectral, and ab initio molecular dynamics (AIMD) simulations demonstrate that NSF plays a dual role in promoting the phase transformation from gypsum to anhydrite and in changing the ionic species to prevent re-doping in anhydrite, which is not occurred in bulk solutions. The potential of the NSF is further validated in extracting other heavy metal(loid)s (e.g., Cu, Zn, and Cr) from synthetic and actual gypsum cake. With energy consumption and costs at 1/200 and 1/10 of traditional hydrometallurgy separately, this method offers an efficient and economical pathway for extracting HMs from heavy metal-bearing waste and recycling industrial solid waste.

2.
Water Res ; 251: 121166, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38266437

RESUMEN

The hydroxyl radical (·OH) stands as one of the most potent oxidizing agents, capable of engaging in non-selective and instantaneous reactions with contaminants in water. Herein, we present a novel iron sulfide phase (S-FeS) characterized by an unprecedented structure, accompanied by its remarkable hydroxyl radical generation capability and contaminant degradation efficiency surpassing that of the conventional metastable iron sulfide phase, namely, the Mackinawite (FeS). In comparison to FeS, S-FeS exhibits enhanced degradation kinetics and higher efficacy in the removal of methylene blue, ciprofloxacin, and trivalent arsenic. Utilizing density functional theory (DFT) calculations, we postulate the mechanism for the exceptional contaminant degradation performance of S-FeS to be attributed to the increased exposure of the highly reactive (110) crystal facets. This research uncovers a new metastable phase that expands the polymorphisms within the iron sulfide family and showcases its capability for driving the oxygen reduction reaction.


Asunto(s)
Radical Hidroxilo , Contaminantes Químicos del Agua , Radical Hidroxilo/química , Oxidación-Reducción , Compuestos Ferrosos , Oxidantes , Contaminantes Químicos del Agua/química
3.
Environ Sci Pollut Res Int ; 27(28): 35638-35649, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32613501

RESUMEN

Metal-modified adsorbent had appreciable adsorption capacity and fast rate toward norfloxacin (NOR), but limited studies focused on the influence of metal species on adsorbents' performance. In this study, Fe and Cu were chosen to be loaded on mesoporous silicon SBA-15 for absorbing NOR and investigating the key function of metal species. An obvious synergy effect was found between active species and supporter. A high adsorption capacity (44.8 mg g-1 for Fe/SBA-15 and 78.3 mg g-1 for Cu/SBA-15) and short equilibration time (< 2 h) were obtained. NOR adsorptions on two processes were described well by pseudo-second-order kinetics, particle diffusion equation, and Langmuir isotherm. The adsorption processes were spontaneous, but NOR adsorption on Cu/SBA-15 was endothermic while its adsorption on Fe/SBA-15 was exothermic. HA had dual effect on the adsorption efficiency, with a promotion at low HA concentration but an inhibition at high concentration. NOR removal increased first and then decreased with pH ascension from 3 to 9 for both Fe/SBA-15 and Cu/SBA-15, achieving maximum at pH = 7. Comparative characterizations and experiments suggested that NOR adsorption processes were dominated by electrostatic interactions, n-π EDA interactions, hydrogen bonds, and surface complex. The greater n-π EDA and complex efficiency of Cu with NOR resulted in the superior performance of Cu/SBA-15. Graphical abstract.


Asunto(s)
Norfloxacino , Contaminantes Químicos del Agua/análisis , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Metales , Silicio , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...