Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(26): 4775-4794, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37277179

RESUMEN

The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1 (α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by α9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.SIGNIFICANCE STATEMENT Restoration of neurologic function after spinal cord injury has yet to be achieved in human patients. To accomplish this, severed nerve fibers must be made to regenerate. Reconstruction of nerve pathways has not been possible, but recently, a method for stimulating long-distance axon regeneration of sensory fibers in rodents has been developed. This research uses profiling of messenger RNAs in the regenerating sensory neurons to discover which mechanisms are activated. This study shows that the regenerating neurons initiate a novel CNS regeneration program which includes molecular transport, autophagy, ubiquitination, and modulation of the endoplasmic reticulum (ER). The study identifies mechanisms that neurons need to activate to regenerate their nerve fibers.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Ratas , Humanos , Masculino , Animales , Axones/fisiología , Integrinas/metabolismo , Regeneración Nerviosa/fisiología , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales/fisiología
2.
Cells ; 7(3)2018 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-29534450

RESUMEN

Integrin activation is essential for creating functional transmembrane receptors capable of inducing downstream cellular effects such as cell migration, cell spreading, neurite outgrowth and axon regeneration. Integrins are bidirectional signalling molecules that mediate their effects by 'inside-out' and 'outside-in' signalling. This review will provide a detailed overview of integrin activation focusing on intracellular activation in neurons and discussing direct implications in the regulation of neurite outgrowth and axon regeneration.

3.
Bio Protoc ; 7(16)2017 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-28920069

RESUMEN

The Hargreaves test is specifically designed to assess thermal pain sensation in rodents such as rats and mice. This test has been used in experiments involving pain sensitization or recovery of thermal pain response following neural injury and regeneration. We present here a step-by-step protocol highlighted with important notes to guide first-time users through the learning process. Additionally, we have also included representative data from a rat model of sensory denervation showing how the data can be analysed to obtain meaningful results. We hope that this protocol can also assist potential users in deciding whether the Hargreaves test is a suitable test for their experiment.

4.
J Vis Exp ; (123)2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28518122

RESUMEN

Achieving axon regeneration after nervous system injury is a challenging task. As different parts of the central nervous system (CNS) differ from each other anatomically, it is important to identify an appropriate model to use for the study of axon regeneration. By using a suitable model, we can formulate a specific treatment based on the severity of injury, the neuronal cell type of interest, and the desired spinal tract for assessing regeneration. Within the sensory pathway, DRG neurons are responsible for relaying sensory information from the periphery to the CNS. We present here a protocol that uses a DRG injection with a viral vector and a concurrent dorsal root crush injury in the lower cervical spinal cord of an adult rat as a model to study sensory axon regeneration. As demonstrated using a control virus, AAV5-GFP, we show the effectiveness of a direct DRG injection in transducing DRG neurons and tracing sensory axons into the spinal cord. We also show the effectiveness of the dorsal root crush injury in denervating the forepaw as an injury model for evaluating axon regeneration. Despite the requirement for specialized training to perform this invasive surgical procedure, the protocol is flexible, and potential users can modify many parts to accommodate their experimental requirements. Importantly, it can serve as a foundation for those in search of a suitable animal model for their studies. We believe that this article will help new users to learn the procedure in a very efficient and effective manner.


Asunto(s)
Axones , Lesiones por Aplastamiento/fisiopatología , Ganglios Espinales , Compresión Nerviosa/métodos , Regeneración Nerviosa , Células Receptoras Sensoriales , Raíces Nerviosas Espinales/lesiones , Animales , Vectores Genéticos , Humanos , Inyecciones/métodos , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Ratas Wistar , Transducción Genética
5.
Neurosci Lett ; 652: 35-40, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27818349

RESUMEN

After injury, the adult mammalian central nervous system (CNS) lacks long-distance axon regeneration. This review discusses the similarities and differences of sensory and motor neurons, seeking to understand how to achieve functional sensory and motor regeneration. As these two types of neurons respond differently to axotomy, growth environment and treatment, the future challenge will be on how to achieve full recovery in a way that allows regeneration of both types of fibres simultaneously.


Asunto(s)
Neuronas Motoras/fisiología , Células Receptoras Sensoriales/fisiología , Traumatismos de la Médula Espinal/patología , Médula Espinal/patología , Animales , Axones/fisiología , Fibroblastos/trasplante , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Transducción de Señal , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal , Transcripción Genética
6.
eNeuro ; 3(4)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27570822

RESUMEN

The regenerative ability of CNS axons decreases with age, however, this ability remains largely intact in PNS axons throughout adulthood. These differences are likely to correspond with age-related silencing of proteins necessary for axon growth and elongation. In previous studies, it has been shown that reintroduction of the α9 integrin subunit (tenascin-C receptor, α9) that is downregulated in adult CNS can improve neurite outgrowth and sensory axon regeneration after a dorsal rhizotomy or a dorsal column crush spinal cord lesion. In the current study, we demonstrate that virally expressed integrins (α9, α6, or ß1 integrin) in the adult rat sensorimotor cortex and adult red nucleus are excluded from axons following neuronal transduction. Attempts to stimulate transport by inclusion of a cervical spinal injury and thus an upregulation of extracellular matrix molecules at the lesion site, or cotransduction with its binding partner, ß1 integrin, did not induce integrin localization within axons. In contrast, virally expressed α9 integrin in developing rat cortex (postnatal day 5 or 10) demonstrated clear localization of integrins in cortical axons revealed by the presence of integrin in the axons of the corpus callosum and internal capsule, as well as in the neuronal cell body. Furthermore, examination of dorsal root ganglia neurons and retinal ganglion cells demonstrated integrin localization both within peripheral nerve as well as dorsal root axons and within optic nerve axons, respectively. Together, our results suggest a differential ability for in vivo axonal transport of transmembrane proteins dependent on neuronal age and subtype.


Asunto(s)
Axones/metabolismo , Encéfalo/metabolismo , Cadenas alfa de Integrinas/metabolismo , Integrina alfa6/metabolismo , Integrina beta1/metabolismo , Médula Espinal/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Ganglios Espinales/citología , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Vectores Genéticos , Cadenas alfa de Integrinas/genética , Integrina alfa6/genética , Integrina beta1/genética , Masculino , Nervio Óptico/citología , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/metabolismo , Ratas Endogámicas Lew , Ratas Sprague-Dawley , Nervio Ciático/citología , Nervio Ciático/crecimiento & desarrollo , Nervio Ciático/metabolismo , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
7.
J Neurosci ; 36(27): 7283-97, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27383601

RESUMEN

UNLABELLED: After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9ß1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a ß1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT: The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory-motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient.


Asunto(s)
Axones/fisiología , Regulación de la Expresión Génica/fisiología , Integrinas/metabolismo , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/citología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Modelos Animales de Enfermedad , Femenino , Lateralidad Funcional , Ganglios Espinales/citología , Integrinas/genética , Proteínas del Tejido Nervioso/metabolismo , Neuritas/fisiología , Presión , Ratas , Ratas Sprague-Dawley , Caminata/fisiología
8.
Neural Regen Res ; 11(12): 1884-1887, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28197173

RESUMEN

Axon regeneration in the CNS is largely unsuccessful due to excess inhibitory extrinsic factors within lesion sites together with an intrinsic inability of neurons to regrow following injury. Recent work demonstrates that forced expression of certain neuronal transmembrane receptors can recapitulate neuronal growth resulting in successful growth within and through inhibitory lesion environments. More specifically, neuronal expression of integrin receptors such as alpha9beta1 integrin which binds the extracellular matrix glycoprotein tenascin-C, trk receptors such as trkB which binds the neurotrophic factor BDNF, and receptor PTPσ which binds chondroitin sulphate proteoglycans, have all been show to significantly enhance regeneration of injured axons. We discuss how reintroduction of these receptors in damaged neurons facilitates signalling from the internal environment of the cell with the external environment of the lesion milieu, effectively resulting in growth and repair following injury. In summary, we suggest an appropriate balance of intrinsic and extrinsic factors are required to obtain substantial axon regeneration.

9.
J Neurosci ; 34(7): 2477-92, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24523539

RESUMEN

PNS axons have a high intrinsic regenerative ability, whereas most CNS axons show little regenerative response. We show that activation of Neu3 sialidase, also known as Neuraminidase-3, causing conversion of GD1a and GT1b to GM1 ganglioside, is an essential step in regeneration occurring in PNS (sensory) but not CNS (retinal) axons in adult rat. In PNS axons, axotomy activates Neu3 sialidase, increasing the ratio of GM1/GD1a and GM1/GT1b gangliosides immediately after injury in vitro and in vivo. No change in the GM1/GD1a ratio after axotomy was observed in retinal axons (in vitro and in vivo), despite the presence of Neu3 sialidase. Externally applied sialidase converted GD1a ganglioside to GM1 and rescued axon regeneration in CNS axons and in PNS axons after Neu3 sialidase blockade. Neu3 sialidase activation in DRGs is initiated by an influx of extracellular calcium, activating P38MAPK and then Neu3 sialidase. Ganglioside conversion by Neu3 sialidase further activates the ERK pathway. In CNS axons, P38MAPK and Neu3 sialidase were not activated by axotomy.


Asunto(s)
Axones/fisiología , Gangliósidos/metabolismo , Regeneración Nerviosa/fisiología , Neuraminidasa/metabolismo , Neuronas Retinianas/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Axotomía , Activación Enzimática/fisiología , Inmunohistoquímica , Masculino , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...