Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 12(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38674697

RESUMEN

In this study, we conducted an extensive investigation of the biodegradation capabilities and stress response of the newly isolated strain Pseudomonas veronii SM-20 in order, to assess its potential for bioremediation of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). Initially, phenotype microarray technology demonstrated the strain's proficiency in utilizing various carbon sources and its resistance to certain stressors. Genomic analysis has identified numerous genes involved in aromatic hydrocarbon metabolism. Biodegradation assay analyzed the depletion of phenanthrene (PHE) when it was added as a sole carbon and energy source. We found that P. veronii strain SM-20 degraded approximately 25% of PHE over a 30-day period, starting with an initial concentration of 600 µg/mL, while being utilized for growth. The degradation process involved PHE oxidation to an unstable arene oxide and 9,10-phenanthrenequinone, followed by ring-cleavage. Comparative proteomics provided a comprehensive understanding of how the entire proteome responded to PHE exposure, revealing the strain's adaptation in terms of aromatic metabolism, surface properties, and defense mechanism. In conclusion, our findings shed light on the promising attributes of P. veronii SM-20 and offer valuable insights for the use of P. veronii species in environmental restoration efforts targeting PAH-impacted sites.

2.
Front Plant Sci ; 14: 1282553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288406

RESUMEN

Introduction: The molecular and physiological mechanisms activated in plants during drought stress tolerance are regulated by several key genes with both metabolic and regulatory roles. Studies focusing on crop gene expression following plant growth-promoting rhizobacteria (PGPR) inoculation may help understand which bioinoculant is closely related to the induction of abiotic stress responses. Methods: Here, we performed a meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to summarise information regarding plant-PGPR interactions, focusing on the regulation of nine genes involved in plant drought stress response. The literature research yielded 3,338 reports, of which only 41 were included in the meta-analysis based on the chosen inclusion criteria. The meta-analysis was performed on four genes (ACO, APX, ACS and DREB2); the other five genes (ERD15, MYB, MYC, acdS, WRKY) had an insufficient number of eligible articles. Results: Forest plots obtained through each meta-analysis showed that the overexpression of ACO, APX, ACS and DREB2 genes was not statistically significant. Unlike the other genes, DREB2 showed statistically significant results in both the presence and absence of PGPR. Considering I2>75 %, the results showed a high heterogeneity among the studies included, and the cause for this was examined using subgroup analysis. Moreover, the funnel plot and Egger's test showed that the analyses were affected by strong publication bias. Discussion: This study argues that the presence of PGPR may not significantly influence the expression of drought stress response-related crop genes. This finding may be due to high heterogeneity, lack of data on the genes examined, and significant publication bias.

3.
J Adv Res ; 42: 189-204, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36513413

RESUMEN

INTRODUCTION: Specific microbial communities are associated to host plants, influencing their phenotype and fitness.Despite the rising interest in plant microbiome, the role of microbial communities associated with perennial fruit plants remains overlooked. OBJECTIVES: This work provides the first comprehensive descriptionof the taxonomical and functional bacterial and fungal microbiota of below- and above-ground organsof three commercially important strawberry genotypes under cultural conditions. METHODS: Strawberry-associatedfungal and bacterial microbiomes were characterised by Next-Generation Sequencing and the potential functions expressed by the bacterial microbiome were analysed by both in silico and in vitro characterisation of plant growth-promoting abilities of native bacteria. Additionally, the association between the strawberry microbiome, plant disease tolerance, plant mineral nutrient content, and fruit quality was investigated. RESULTS: Results showed that thestrawberry core microbiome included 24 bacteria and 15 fungal operational taxonomicunits (OTUs).However, plant organ and genotype had a significant role in determining the taxonomical and functional composition of microbial communities. Interestingly, the cultivar with the highesttolerance against powdery mildew and leaf spot and the highest fruit productivity was the only one able to ubiquitously recruit the beneficial bacterium, Pseudomonasfluorescens, and to establish a mutualistic symbiosis with the arbuscular mycorrhizaRhizophagus irregularis. CONCLUSION: This work sheds light on the interaction of cultivated strawberry genotypes with a variety of microbes and highlights the importance of their applications to increase the sustainability of fruit crop production.


Asunto(s)
Fragaria , Microbiota , Fragaria/microbiología , Bacterias/genética , Genotipo , Simbiosis
5.
Front Microbiol ; 12: 668274, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421838

RESUMEN

Research on the gut microbiome may help with increasing our understanding of primate health with species' ecology, evolution, and behavior. In particular, microbiome-related information has the potential to clarify ecology issues, providing knowledge in support of wild primates conservation and their associated habitats. Indri (Indri indri) is the largest extant living lemur of Madagascar. This species is classified as "critically endangered" by the IUCN Red List of Threatened Species, representing one of the world's 25 most endangered primates. Indris diet is mainly folivorous, but these primates frequently and voluntarily engage in geophagy. Indris have never been successfully bred under human care, suggesting that some behavioral and/or ecological factors are still not considered from the ex situ conservation protocols. Here, we explored gut microbiome composition of 18 indris belonging to 5 different family groups. The most represented phyla were Proteobacteria 40.1 ± 9.5%, Bacteroidetes 28.7 ± 2.8%, Synergistetes 16.7 ± 4.5%, and Firmicutes 11.1 ± 1.9%. Further, our results revealed that bacterial alpha and beta diversity were influenced by indri family group and sex. In addition, we investigated the chemical composition of geophagic soil to explore the possible ecological value of soil as a nutrient supply. The quite acidic pH and high levels of secondary oxide-hydroxides of the soils could play a role in the folivorous diet's gut detoxification activity. In addition, the high contents of iron and manganese found the soils could act as micronutrients in the indris' diet. Nevertheless, the concentration of a few elements (i.e., calcium, sulfur, boron, nickel, sodium, and chromium) was higher in non-geophagic than in geophagic soils. In conclusion, the data presented herein provide a baseline for outlining some possible drivers responsible for the gut microbiome diversity in indris, thus laying the foundations for developing further strategies involved in indris' conservation.

6.
Insects ; 12(7)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34357305

RESUMEN

In Europe, one of the most significant mosquitoes of public health importance is Aedes albopictus (Skuse), an allochthonous species of Asian origin. One of the most promising control methods against Aedes albopictus is the sterile insect technique (SIT), which consists of mass rearing the target species, separation of males from females, and male exposure to sterilizing ionizing radiation. Once released in the environment, the sterile males are expected to search for wild females to mate with. If mating occurs, no offspring is produced. The quality of sterile males is a crucial aspect in SIT programs in order to optimize effectiveness and limit production costs. The integration of probiotic microorganisms in larval and adult mosquito diets could enhance the quality parameters of the released sterile males. In this review, we attempt to give the most representative picture of the present knowledge on the relationships between gut microbiota of mosquitoes and the natural or artificial larval diet. Furthermore, the possible use of probiotic microorganisms for mosquito larvae rearing is explored. Based on the limited amount of data found in the literature, we hypothesize that a better understanding of the interaction between mosquitoes and their microbiota may bring significant improvements in mosquito mass rearing for SIT purposes.

7.
Environ Sci Pollut Res Int ; 28(44): 62353-62367, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34191264

RESUMEN

Animal manure application to soils is considered to be one of the main cause of antibiotic and bacterial pathogen spread in the environment. Pig livestock, which is the source of one of the most used fertilizer for cultivated land, is also a hotspot for antibiotics and antibiotic-resistant bacteria. Besides harsh chemical and physical sanitization treatments for the abatement of antibiotics and bacterial load in livestock waste, more sustainable and environmentally friendly strategies need to be considered. In this context, the use of natural substances which are proved useful for pest and disease control is currently under exploration for their role in the reduction of bacterial pathogen population. Among these, plants and derived products from the Brassicaceae family, characterized by the presence of a defensive glucosinolate-myrosinase enzymatic system, have been successfully exploited for years in agriculture using the so-called biofumigation technique against crop diseases. Although the application of biofumigation to suppress a range of soil borne pests has been well documented, no studies have been examined to reduce bacterial population in animal waste. In the present study, the release and the antibacterial activity of bioactive compounds deriving from different Brassicaceae defatted seed meals against pathogens and bacterial population in pig manure is addressed. Rapistrum rugosum and Brassica nigra defatted seed meals were found to be the most active products against tested pathogens and able to significantly reduce the bacterial load in the manure.


Asunto(s)
Brassicaceae , Estiércol , Animales , Carga Bacteriana , Comidas , Semillas , Porcinos
8.
Methods Mol Biol ; 2242: 233-243, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33961228

RESUMEN

Making use of mathematics and statistics, bioinformatics helps biologists to quickly obtain information from a huge amount of experimental data. Nowadays, a large number of web- and computer-based tools are available, allowing more unskilled scientists to be familiar with data analysis techniques. The present chapter gives an overview of the most easy-to-use tools and software packages for bacterial genes and genome analysis present on the Web, with the aim to mainly help wet-lab researcher at undergraduate and postgraduate levels to introduce them to bioinformatics analysis of biological data.


Asunto(s)
Bacterias/genética , Biología Computacional , ADN Bacteriano/genética , Genoma Bacteriano , Genómica , Programas Informáticos
9.
Methods Mol Biol ; 2278: 141-148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33649954

RESUMEN

Bifidobacteria are commensal bacteria, which naturally colonize the gastrointestinal tract of a large number of animals, including humans, contributing to their health and well-being. An important taxonomic marker for the identification of members of the bifidobacterial group is the presence of the fructose-6-phosphate phosphoketolase (F6PPK) activity. The F6PPK enzyme is involved in the bifidus shunt based on the ability of F6PPK to split fructose-6-phosphate into erythrose-4-phosphate and acetyl phosphate. Here, we describe the two main methods utilized to detect the presence of F6PPK activity, that is, the enzymatic assay and the presence of the D-xylulose-5-phosphate/fructose-6-phosphate phosphoketolase bifidobacterial gene.


Asunto(s)
Aldehído-Liasas/metabolismo , Proteínas Bacterianas/metabolismo , Bifidobacterium/metabolismo , Pruebas de Enzimas/métodos , Aldehído-Liasas/genética , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana/métodos , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , Técnicas de Cultivo de Célula/métodos , Genes Bacterianos , Reacción en Cadena de la Polimerasa/métodos
10.
Microb Ecol ; 82(1): 215-223, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33471174

RESUMEN

Here, we investigated the possible linkages among geophagy, soil characteristics, and gut mycobiome of indri (Indri indri), an endangered lemur species able to survive only in wild conditions. The soil eaten by indri resulted in enriched secondary oxide-hydroxides and clays, together with a high concentration of specific essential micronutrients. This could partially explain the role of the soil in detoxification and as a nutrient supply. Besides, we found that soil subject to geophagy and indris' faeces shared about 8.9% of the fungal OTUs. Also, several genera (e.g. Fusarium, Aspergillus and Penicillium) commonly associated with soil and plant material were found in both geophagic soil and indri samples. On the contrary, some taxa with pathogenic potentials, such as Cryptococcus, were only found in indri samples. Further, many saprotrophs and plant-associated fungal taxa were detected in the indri faeces. These fungal species may be involved in the digestion processes of leaves and could have a beneficial role in their health. In conclusion, we found an intimate connection between gut mycobiome and soil, highlighting, once again, the potential consequent impacts on the wider habitat.


Asunto(s)
Indriidae , Lemur , Micobioma , Animales , Ecosistema , Pica , Microbiología del Suelo
11.
mSystems ; 6(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436514

RESUMEN

Rhizobia are ecologically important, facultative plant-symbiotic microbes. In nature, there is a large variability in the association of rhizobial strains and host plants of the same species. Here, we evaluated whether plant and rhizobial genotypes influence the initial transcriptional response of rhizobium following perception of a host plant. RNA sequencing of the model rhizobium Sinorhizobium meliloti exposed to root exudates or luteolin (an inducer of nod genes, involved in the early steps of symbiotic interaction) was performed on a combination of three S. meliloti strains and three alfalfa varieties as host plants. The response to root exudates involved hundreds of changes in the rhizobium transcriptome. Of the differentially expressed genes, 35% were influenced by the strain genotype, 16% were influenced by the plant genotype, and 29% were influenced by strain-by-host plant genotype interactions. We also examined the response of a hybrid S. meliloti strain in which the symbiotic megaplasmid (∼20% of the genome) was mobilized between two of the above-mentioned strains. Dozens of genes were upregulated in the hybrid strain, indicative of nonadditive variation in the transcriptome. In conclusion, this study demonstrated that transcriptional responses of rhizobia upon perception of legumes are influenced by the genotypes of both symbiotic partners and their interaction, suggesting a wide spectrum of genetic determinants involved in the phenotypic variation of plant-rhizobium symbiosis.IMPORTANCE A sustainable way for meeting the need of an increased global food demand should be based on a holobiont perspective, viewing crop plants as intimately associated with their microbiome, which helps improve plant nutrition, tolerance to pests, and adverse climate conditions. However, the genetic repertoire needed for efficient association with plants by the microbial symbionts is still poorly understood. The rhizobia are an exemplary model of facultative plant symbiotic microbes. Here, we evaluated whether genotype-by-genotype interactions could be identified in the initial transcriptional response of rhizobium perception of a host plant. We performed an RNA sequencing study to analyze the transcriptomes of different rhizobial strains elicited by root exudates of three alfalfa varieties as a proxy of an early step of the symbiotic interaction. The results indicated strain- and plant variety-dependent variability in the observed transcriptional changes, providing fundamentally novel insights into the genetic basis of rhizobium-plant interactions. Our results provide genetic insights and perspective to aid in the exploitation of natural rhizobium variation for improvement of legume growth in agricultural ecosystems.

12.
Front Microbiol ; 11: 569249, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193160

RESUMEN

A microbiome is defined as a complex collection of microorganisms and their genetic material. Studies regarding gut microbiomes of different animals have provided ecological and evolutionary information showing a strong link between health and disease. Very few studies have compared the gut microbiota of animals housed under controlled conditions and those in wild habitats. Little research has been performed on the reptile gut microbiota, and what studies do exist are mainly focused on carnivorous reptiles. The aim of this study was first to describe the overall microbiota structure of Aldabra giant tortoises (Aldabrachelys gigantea) and, second, to compare the microbiota of tortoises living under natural conditions and tortoises living in controlled environments, such as zoological and botanical parks, in Italy and in the Seychelles. Seventeen fecal samples were collected from giant tortoises located on Curieuse Island (CI, n = 8), at the Botanical Garden (BG, n = 3) in Mahé (Seychelles Islands) and at Parco Natura Viva-Garda Zoological Park (PNV, n = 6) in Verona (Italy). The V3-V4 region of the 16S rRNA gene was amplified in order to characterize the gut microbiota profile. Overall, the major phyla identified were Bacteroidetes 42%, Firmicutes 32%, and Spirochaetes 9%. A higher microbial diversity (alpha indices) was observed for the BG samples as compared to the PNV samples (Shannon: 5.39 vs. 4.43; InvSimpson: 80.7 vs. 25; Chao1: 584 vs. 377 p < 0.05). The results in the present study showed a significant difference in beta diversity between the samples from CI, BG, and PNV (p = 0.001), suggesting a different bacterial fecal profile of giant tortoises at the different habitats. This study provided novel insights into the effects of different environmental conditions on the gut microbial communities of giant tortoises. In particular, differences were reported regarding the bacterial gut community structure between tortoises in natural and in controlled environments. These results could help to improve the management of giant tortoises under human care, thus enhancing ex-situ conservation efforts far from the species geographic range.

13.
Front Microbiol ; 11: 1416, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793126

RESUMEN

Antibiotic resistance is a public health problem of growing concern. Animal manure application to soil is considered to be a main cause of the propagation and dissemination of antibiotic residues, antibiotic-resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the soil-water system. In recent decades, studies on the impact of antibiotic-contaminated manure on soil microbiomes have increased exponentially, in particular for taxonomical diversity and ARGs' diffusion. Antibiotic resistance genes are often located on mobile genetic elements (MGEs). Horizontal transfer of MGEs toward a broad range of bacteria (pathogens and human commensals included) has been identified as the main cause for their persistence and dissemination. Chemical and bio-sanitizing treatments reduce the antibiotic load and ARB. Nevertheless, effects of these treatments on the persistence of resistance genes must be carefully considered. This review analyzed the most recent research on antibiotic and ARG environmental dissemination conveyed by livestock waste. Strategies to control ARG dissemination and antibiotic persistence were reviewed with the aim to identify methods for monitoring DNA transferability and environmental conditions promoting such diffusion.

14.
Colloids Surf B Biointerfaces ; 195: 111266, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32739771

RESUMEN

The development of new therapeutic strategies against multidrug resistant Gram-negative bacteria is a major challenge for pharmaceutical research. In this respect, it is increasingly recognized that an efficient treatment for resistant bacterial infections should combine antimicrobial and anti-inflammatory effects. Here, we explore the multifunctional therapeutic potential of nanostructured self-assemblies from a cationic bolaamphiphile, which target bacterial lipopolysaccharides (LPSs) and associates with an anti-bacterial nucleic acid to form nanoplexes with therapeutic efficacy against Gram-negative bacteria. To understand the mechanistic details of these multifunctional antimicrobial-anti-inflammatory properties, we performed a fundamental study, comparing the interaction of these nanostructured therapeutics with synthetic biomimetic bacterial membranes and live bacterial cells. Combining a wide range of experimental techniques (Confocal Microscopy, Fluorescence Correlation Spectroscopy, Microfluidics, NMR, LPS binding assays), we demonstrate that the LPS targeting capacity of the bolaamphiphile self-assemblies, comparable to that exerted by Polymixin B, is a key feature of these nanoplexes and one that permits entry of therapeutic nucleic acids in Gram-negative bacteria. These findings enable a new approach to the design of efficient multifunctional therapeutics with combined antimicrobial and anti-inflammatory effects and have therefore the potential to broadly impact fundamental and applied research on self-assembled nano-sized antibacterials for antibiotic resistant infections.


Asunto(s)
Antiinfecciosos , Lipopolisacáridos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , ADN , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
15.
Can J Microbiol ; 65(1): 1-33, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30205015

RESUMEN

The rhizobium-legume symbiosis is a major source of fixed nitrogen (ammonia) in the biosphere. The potential for this process to increase agricultural yield while reducing the reliance on nitrogen-based fertilizers has generated interest in understanding and manipulating this process. For decades, rhizobium research has benefited from the use of leading techniques from a very broad set of fields, including population genetics, molecular genetics, genomics, and systems biology. In this review, we summarize many of the research strategies that have been employed in the study of rhizobia and the unique knowledge gained from these diverse tools, with a focus on genome- and systems-level approaches. We then describe ongoing synthetic biology approaches aimed at improving existing symbioses or engineering completely new symbiotic interactions. The review concludes with our perspective of the future directions and challenges of the field, with an emphasis on how the application of a multidisciplinary approach and the development of new methods will be necessary to ensure successful biotechnological manipulation of the symbiosis.


Asunto(s)
Fabaceae/microbiología , Rhizobium/fisiología , Simbiosis , Perfilación de la Expresión Génica , Fijación del Nitrógeno , Rhizobium/genética
16.
Genes (Basel) ; 9(11)2018 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-30413093

RESUMEN

Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices.

17.
ACS Synth Biol ; 7(10): 2365-2378, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30223644

RESUMEN

Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.


Asunto(s)
Nitrógeno/metabolismo , Sinorhizobium meliloti/metabolismo , Simbiosis , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Espectroscopía de Resonancia Magnética , Medicago/microbiología , Ingeniería Metabólica/métodos , Raíces de Plantas/microbiología , Plásmidos/genética , Plásmidos/metabolismo , Análisis de Componente Principal , Sinorhizobium meliloti/genética
18.
Front Microbiol ; 8: 2207, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29170661

RESUMEN

Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes.

19.
Front Genet ; 8: 6, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28194158

RESUMEN

Plant-associated bacteria exhibit a number of different strategies and specific genes allow bacteria to communicate and metabolically interact with plant tissues. Among the genes found in the genomes of plant-associated bacteria, the gene encoding the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (acdS) is one of the most diffused. This gene is supposed to be involved in the cleaving of plant-produced ACC, the precursor of the plant stress-hormone ethylene toning down the plant response to infection. However, few reports are present on the actual role in rhizobia, one of the most investigated groups of plant-associated bacteria. In particular, still unclear is the origin and the role of acdS in symbiotic competitiveness and on the selective benefit it may confer to plant symbiotic rhizobia. Here we present a phylogenetic and functional analysis of acdS orthologs in the rhizobium model-species Sinorhizobium meliloti. Results showed that acdS orthologs present in S. meliloti pangenome have polyphyletic origin and likely spread through horizontal gene transfer, mediated by mobile genetic elements. When acdS ortholog from AK83 strain was cloned and assayed in S. meliloti 1021 (lacking acdS), no modulation of plant ethylene levels was detected, as well as no increase in fitness for nodule occupancy was found in the acdS-derivative strain compared to the parental one. Surprisingly, AcdS was shown to confer the ability to utilize formamide and some dipeptides as sole nitrogen source. Finally, acdS was shown to be negatively regulated by a putative leucine-responsive regulator (LrpL) located upstream to acdS sequence (acdR). acdS expression was induced by root exudates of both legumes and non-leguminous plants. We conclude that acdS in S. meliloti is not directly related to symbiotic interaction, but it could likely be involved in the rhizospheric colonization or in the endophytic behavior.

20.
Res Microbiol ; 168(3): 276-282, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27884782

RESUMEN

We examined whether the microbiota of two related aromatic thyme species, Thymus vulgaris and Thymus citriodorus, differs in relation to the composition of the respective essential oil (EO). A total of 576 bacterial isolates were obtained from three districts (leaves, roots and rhizospheric soil). They were taxonomically characterized and inspected for tolerance to the EO from the two thyme species. A district-related taxonomic pattern was found. In particular, high taxonomic diversity among the isolates from leaves was detected. Moreover, data obtained revealed a differential pattern of resistance of the isolates to EOs extracted from T. vulgaris and T. citriodorus, which was interpreted in terms of differing chemical composition of the EO of their respective host plants. In conclusion, we suggest that bacterial colonization of leaves in Thymus spp. is influenced by the EO present in leaf glandular tissue as one of the selective forces shaping endophytic community composition.


Asunto(s)
Microbiota/fisiología , Aceites Volátiles/metabolismo , Hojas de la Planta/microbiología , Aceites de Plantas/metabolismo , Thymus (Planta)/química , Thymus (Planta)/microbiología , Adaptación Fisiológica , Carga Bacteriana/efectos de los fármacos , Endófitos/clasificación , Endófitos/efectos de los fármacos , Endófitos/genética , Endófitos/aislamiento & purificación , Microbiota/efectos de los fármacos , Aceites Volátiles/aislamiento & purificación , Aceites Volátiles/farmacología , Hojas de la Planta/química , Aceites de Plantas/aislamiento & purificación , Aceites de Plantas/farmacología , Raíces de Plantas/microbiología , Suelo , Thymus (Planta)/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...