Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955536

RESUMEN

Viral pneumonia caused by highly infectious SARS-CoV-2 poses a higher risk to older people and those who have underlying health conditions, including Alzheimer's disease. In this work we present newly designed tacrine-based radioconjugates with physicochemical and biological properties that are crucial for the potential application as diagnostic radiopharmaceuticals. A set of ten tacrine derivatives was synthesized, labelled with gallium-68 and fully characterized in the context of their physicochemical properties. Based on these results, the final two most promising radioconjugates, [68Ga]Ga-NODAGA-Bn-NH(CH2)9Tac and [68Ga]Ga-THP-NH(CH2)9Tac, were selected for biodistribution studies. The latter compound was proven to be a good inhibitor of cholinesterases with significant affinity toward the lungs, according to the biodistribution studies. On the basis of molecular modelling combined with in vitro studies, we unraveled which structural properties of the developed tacrine derivatives are crucial for high affinity toward acetylcholinesterase, whose increased levels in lung tissues in the course of coronavirus disease indicate the onset of pneumonia. The radiopharmaceutical [68Ga]Ga-THP-NH(CH2)9Tac was ultimately selected due to its increased accuracy and improved sensitivity in PET imaging of lung tissue with high levels of acetylcholinesterase, and it may become a novel potential diagnostic modality for the determination of lung perfusion, including in inflammation after COVID-19.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Acetilcolinesterasa , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , COVID-19/diagnóstico por imagen , Radioisótopos de Galio/química , Humanos , Radiofármacos/química , SARS-CoV-2 , Tacrina , Distribución Tisular
2.
Eur J Pharmacol ; 919: 174792, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35122869

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and eventually fatal lung disease with a complex etiology. Approved drugs, nintedanib and pirfenidone, modify disease progression, but IPF remains incurable and there is an urgent need for new therapies. We identified chitotriosidase (CHIT1) as new driver of fibrosis in IPF and a novel therapeutic target. We demonstrate that CHIT1 activity and expression are significantly increased in serum (3-fold) and induced sputum (4-fold) from IPF patients. In the lungs CHIT1 is expressed in a distinct subpopulation of profibrotic, disease-specific macrophages, which are only present in patients with ILDs and CHIT1 is one of the defining markers of this fibrosis-associated gene cluster. To define CHIT1 role in fibrosis, we used the therapeutic protocol of the bleomycin-induced pulmonary fibrosis mouse model. We demonstrate that in the context of chitinase induction and the macrophage-specific expression of CHIT1, this model recapitulates lung fibrosis in ILDs. Genetic inactivation of Chit1 attenuated bleomycin-induced fibrosis (decreasing the Ashcroft scoring by 28%) and decreased expression of profibrotic factors in lung tissues. Pharmacological inhibition of chitinases by OATD-01 reduced fibrosis and soluble collagen concentration. OATD-01 exhibited anti-fibrotic activity comparable to pirfenidone resulting in the reduction of the Ashcroft score by 32% and 31%, respectively. These studies provide a preclinical proof-of-concept for the antifibrotic effects of OATD-01 and establish CHIT1 as a potential new therapeutic target for IPF.


Asunto(s)
Hexosaminidasas , Fibrosis Pulmonar Idiopática , Inhibidores de Proteínas Quinasas , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Bleomicina , Modelos Animales de Enfermedad , Hexosaminidasas/antagonistas & inhibidores , Hexosaminidasas/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Ratones Endogámicos C57BL , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
3.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830471

RESUMEN

Cardiovascular diseases (CVD), with myocardial infarction (MI) being one of the crucial components, wreak havoc in developed countries. Advanced imaging technologies are required to obtain quick and widely available diagnostic data. This paper describes a multimodal approach to in vivo perfusion imaging using the novel SYN1 tracer based on the fluorine-18 isotope. The NOD-SCID mice were injected intravenously with SYN1 or [18F] fluorodeoxyglucose ([18F]-FDG) radiotracers after induction of the MI. In all studies, the positron emission tomography-computed tomography (PET/CT) technique was used. To obtain hemodynamic data, mice were subjected to magnetic resonance imaging (MRI). Finally, the biodistribution of the SYN1 compound was performed using Wistar rat model. SYN1 showed normal accumulation in mouse and rat hearts, and MI hearts correctly indicated impaired cardiac segments when compared to [18F]-FDG uptake. In vivo PET/CT and MRI studies showed statistical convergence in terms of the size of the necrotic zone and cardiac function. This was further supported with RNAseq molecular analyses to correlate the candidate function genes' expression, with Serpinb1c, Tnc and Nupr1, with Trem2 and Aldolase B functional correlations showing statistical significance in both SYN1 and [18F]-FDG. Our manuscript presents a new fluorine-18-based perfusion radiotracer for PET/CT imaging that may have importance in clinical applications. Future research should focus on confirmation of the data elucidated here to prepare SYN1 for first-in-human trials.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Corazón/diagnóstico por imagen , Infarto del Miocardio/genética , Proteínas de Neoplasias/genética , Serpinas/genética , Tenascina/genética , Animales , Medios de Contraste/farmacología , Fluorodesoxiglucosa F18/farmacología , Fructosa-Bifosfato Aldolasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Humanos , Imagen por Resonancia Magnética , Masculino , Glicoproteínas de Membrana/genética , Ratones , Infarto del Miocardio/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Receptores Inmunológicos/genética , Distribución Tisular/efectos de los fármacos
4.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639225

RESUMEN

Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.


Asunto(s)
Células Madre Mesenquimatosas/citología , Imagen Molecular/métodos , Mioblastos Esqueléticos/citología , Infarto del Miocardio/patología , Miocardio/patología , Animales , Modelos Animales de Enfermedad , Genes Reporteros , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mioblastos Esqueléticos/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo
5.
Sci Rep ; 11(1): 19825, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615887

RESUMEN

Preclinical and clinical studies have shown that stem cells can promote the regeneration of damaged tissues, but therapeutic protocols need better quality control to confirm the location and number of transplanted cells. This study describes in vivo imaging while assessing reporter gene expression by its binding to a radiolabelled molecule to the respective receptor expressed in target cells. Five mice underwent human skeletal muscle-derived stem/progenitor cell (huSkMDS/PC EF1-HSV-TK) intracardial transplantation after induction of myocardial infarction (MI). The metabolic parameters of control and post-infarction stem progenitor cell-implanted mice were monitored using 2-deoxy-18F-fluorodeoxyglucose ([18F]-FDG) before and after double promotor/reporter probe imaging with 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]-FHBG) using positron emission tomography (PET) combined with computed tomography (CT). Standardized uptake values (SUVs) were then calculated based on set regions of interest (ROIs). Experimental animals were euthanized after magnetic resonance imaging (MRI). Molecular [18F]-FHBG imaging of myogenic stem/progenitor cells in control and post-infarction mice confirmed the survival and proliferation of transplanted cells, as shown by an increased or stable signal from the PET apparatus throughout the 5 weeks of monitoring. huSkMDS/PC EF1-HSV-TK transplantation improved cardiac metabolic ([18F]-FDG with PET) and haemodynamic (MRI) parameters. In vivo PET/CT and MRI revealed that the precise use of a promotor/reporter probe incorporated into stem/progenitor cells may improve non-invasive monitoring of targeted cellular therapy in the cardiovascular system.


Asunto(s)
Fluorodesoxiglucosa F18 , Imagen Molecular , Mioblastos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Células Madre Adultas/metabolismo , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones SCID , Imagen Molecular/métodos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/etiología , Poliésteres
6.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208396

RESUMEN

Non-small cell lung cancer (NSCLC) continues to be the leading cause of cancer death worldwide. Recently, targeting molecules whose functions are associated with tumorigenesis has become a game changing adjunct to standard anti-cancer therapy. As evidenced by the results of preclinical and clinical investigations, whole-body irradiations (WBI) with X-rays at less than 0.1-0.2 Gy per fraction can induce remissions of various neoplasms without inciting adverse side effects of conventional chemo- and radiotherapy. In the present study, a murine model of human NSCLC was employed to evaluate for the first time the anti-neoplastic efficacy of WBI combined with inactivation of CTLA-4, PD-1, and/or HSP90. The results indicate that WBI alone and in conjunction with the inhibition of the function of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) and the programmed death-1 (PD-1) receptor immune checkpoints (ICs) and/or heat shock protein 90 (HSP90) markedly reduced tumorigenesis in mice implanted by three different routes with the syngeneic Lewis lung cancer cells and suppressed clonogenic potential of Lewis lung carcinoma (LLC1) cells in vitro. These results were associated with the relevant changes in the profile of pro- and anti-neoplastic immune cells recruited to the growing tumors and the circulating anti- and pro-inflammatory cytokines. In contrast, inhibition of the tested molecular targets used either separately or in combination with each other did not exert notable anti-neoplastic effects. Moreover, no significant synergistic effects were detected when the inhibitors were applied concurrently with WBI. The obtained results supplemented with further mechanistic explanations provided by future investigations will help design the effective strategies of treatment of lung and other cancers based on inactivation of the immune checkpoint and/or heat shock molecules combined with low-dose radiotherapy.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas de Punto de Control Inmunitario/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Trasplante de Neoplasias , Dosificación Radioterapéutica , Irradiación Corporal Total , Animales , Células Clonales , Pulmón/patología , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor , Macrófagos/patología , Ratones Endogámicos C57BL , Ensayo de Tumor de Célula Madre
7.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199867

RESUMEN

NIS is a potent iodide transporter encoded by the SLC5A5 gene. Its expression is reduced in papillary thyroid carcinoma (PTC). In this study we analyzed the impact of miR-181a-5p on NIS expression in the context of PTC. We used real-time PCR to analyze the expression of SLC5A5 and miR-181a-5p in 49 PTC/normal tissue pairs. Luciferase assays and mutagenesis were performed to confirm direct binding of miR-181a-5p to the 3'UTR of SLC5A5 and identify the binding site. The impact of modulation of miR-181a-5p using appropriate plasmids on endogenous NIS and radioactive iodine accumulation was verified. We confirmed downregulation of SLC5A5 and concomitant upregulation of miR-181a-5p in PTC. Broadly used algorithms did not predict the binding site of miR-181a-5p in 3'UTR of SLC5A5, but we identified and confirmed the binding site through mutagenesis using luciferase assays. In MCF7 and HEK293-flhNIS cell lines, transfection with mir-181a-expressing plasmid decreased endogenous SLC5A5, whereas silencing of miR-181a-5p increased it. We observed similar tendencies in protein expression and radioactive iodine accumulation. This study shows for the first time that miR-181a-5p directly regulates SLC5A5 expression in the context of PTC and may decrease efficacy of radioiodine treatment. Accordingly, miR-181a-5p may serve as an emerging target to enhance the efficacy of radioactive iodine therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Simportadores/metabolismo , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Simportadores/genética , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Células Tumorales Cultivadas
8.
Cancers (Basel) ; 12(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532104

RESUMEN

Sarcomas are a heterogeneous group of malignant tumors, that develop from mesenchymal cells. Sarcomas are tumors associated with poor prognosis and expected short overall survival. Efforts to improve treatment efficacy and treatment outcomes of advanced and metastatic sarcoma patients have not led to significant improvements in the last decades. In the Tp53C273X/C273X rat model we therefore aimed to characterize specific gene expression pattern of angiosarcomas with a loss of TP53 function. The presence of metabolically active tumors in several locations including the brain, head and neck, extremities and abdomen was confirmed by magnetic resonance imaging (MRI) and positron emission tomography (PET) examinations. Limb angiosarcoma tumors were selected for microarray expression analysis. The most upregulated pathways in angiosarcoma vs all other tissues were related to cell cycle with mitosis and meiosis, chromosome, nucleosome and telomere maintenance as well as DNA replication and recombination. The downregulated genes were responsible for metabolism, including respiratory chain electron transport, tricarboxylic acid (TCA) cycle, fatty acid metabolism and amino-acid catabolism. Our findings demonstrated that the type of developing sarcoma depends on genetic background, underscoring the importance of developing more malignancy susceptibility models in various strains and species to simulate the study of the diverse genetics of human sarcomas.

9.
Stem Cells Int ; 2020: 1321283, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300364

RESUMEN

OBJECTIVE: Bone defects or atrophy may arise as a consequence of injury, inflammation of various etiologies, and neoplastic or traumatic processes or as a result of surgical procedures. Sometimes the regeneration process of bone loss is impaired, significantly slowed down, or does not occur, e.g., in congenital defects. For the bone defect reconstruction, a piece of the removed bone from ala of ilium or bone transplantation from a decedent is used. Replacement of the autologous or allogenic source of the bone-by-bone substitute could reduce the number of surgeries and time in the pharmacological coma during the reconstruction of the bone defect. Application of mesenchymal stem cells in the reconstruction surgery may have positive influence on tissue regeneration by secretion of angiogenic factors, recruitment of other MSCs, or differentiation into osteoblasts. Materials and Methods. Mesenchymal stem cells derived from the umbilical cord (Wharton's jelly (WJ-MSC)) were cultured in GMP-grade DMEM low glucose supplemented with heparin, 10% platelet lysate, glucose, and antibiotics. In vitro WJ-MSCs were seeded on the bone substitute Bio-Oss Collagen® and cultured in the StemPro® Osteogenesis Differentiation Kit. During the culture on the 1st, 7th, 14th, and 21st day (day in vitro (DIV)), we analyzed viability (confocal microscopy) and adhesion capability (electron microscopy) of WJ-MSC on Bio-Oss scaffolds, gene expression (qPCR), and secretion of proteins (Luminex). In vivo Bio-Oss® scaffolds with WJ-MSC were transplanted to trepanation holes in the cranium to obtain their overgrowth. The computed tomography was performed 7, 14, and 21 days after surgery to assess the regeneration. RESULTS: The Bio-Oss® scaffold provides a favourable environment for WJ-MSC survival. WJ-MSCs in osteodifferentiation medium are able to attach and proliferate on Bio-Oss® scaffolds. Results obtained from qPCR and Luminex® indicate that WJ-MSCs possess the ability to differentiate into osteoblast-like cells and may induce osteoclastogenesis, angiogenesis, and mobilization of host MSCs. In animal studies, WJ-MSCs seeded on Bio-Oss® increased the scaffold integration with host bone and changed their morphology to osteoblast-like cells. CONCLUSIONS: The presented construct consisted of Bio-Oss®, the scaffold with high flexibility and plasticity, approved for clinical use with seeded immunologically privileged WJ-MSC which may be considered reconstructive therapy in bone defects.

10.
Bioorg Chem ; 91: 103136, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31374521

RESUMEN

Design, physicochemical and biological studies of novel radioconjugates for the early diagnosis of Alzheimer's disease, based on the newly synthesized tacrine derivatives were performed. Novel tacrine analogues were labeled with technetium-99m and gallium-68. For all obtained radioconjugates ([99mTc]Tc-Hynic-(tricine)2NH(CH2)ntacrine and [68Ga]Ga-DOTA-NH(CH2)9tacrine, where n = 2-9 denotes the number of methylene groups CH2) the studies of physicochemical properties (lipophilicity, stability in the presence of an excess of standard amino acids cysteine or histidine, human serum and in cerebrospinal fluid) were performed. For two selected radioconjugates [99mTc]Tc-Hynic-(tricine)2NH(CH2)9Tac and [68Ga]Ga-DOTA-NH(CH2)9tacrine (characterized with the highest lipophilicity values) the biological tests (inhibition of cholinesterases action, molecular docking and biodistribution studies) have been performed. All novel radioconjugates showed high stability in biological solutions used. Both selected radioconjugates proved to be good inhibitors of cholinesterases and be able to cross the blood-brain barrier. Radioconjugates [99mTc]Tc-Hynic-(tricine)2NH(CH2)9tacrine and [68Ga]Ga-DOTA-NH(CH2)9tacrine fulfil the conditions for application in nuclear medicine. Radiopharmaceutical [68Ga]Ga-DOTA-NH(CH2)9tacrine, due to increased accuracy and improved sensitivity in PET imaging, may be better potential diagnostic tool for early diagnosis of Alzheimer's disease.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Compuestos de Organotecnecio/farmacología , Radiofármacos/farmacología , Tacrina/análogos & derivados , Tacrina/farmacología , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/diagnóstico , Animales , Encéfalo/metabolismo , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Dominio Catalítico , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/metabolismo , Estabilidad de Medicamentos , Radioisótopos de Galio , Humanos , Masculino , Simulación del Acoplamiento Molecular , Compuestos de Organotecnecio/síntesis química , Compuestos de Organotecnecio/metabolismo , Unión Proteica , Radiofármacos/síntesis química , Radiofármacos/metabolismo , Ratas Wistar , Tacrina/síntesis química , Tacrina/metabolismo
11.
PLoS One ; 13(11): e0206706, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30412628

RESUMEN

The aim of this study was to evaluate hypoxia level at various tumor developmental stages and to compare various methods of hypoxia evaluation in pre-clinical CT26 tumor model. Using three methods of hypoxia determination, we evaluated hypoxia levels during CT26 tumor development in BALB/c mice from day 4 till day 19, in 2-3 days intervals. Molecular method was based on the analysis of selected genes expression related to hypoxia (HIF1A, ANGPTL4, TGFB1, VEGFA, ERBB3, CA9) or specific for inflammation in hypoxic sites (CCL2, CCL5) at various time points after CT26 cancer cells inoculation. Imaging methods of hypoxia evaluation included: positron-emission tomography (PET) imaging using [18F]fluoromisonidazole ([18F]FMISO) and a fluorescence microscope imaging of pimonidazole (PIMO)-positive tumor areas at various time points. Our results showed that tumor hypoxia at molecular level was relatively high at early stage of tumor development as reflected by initially high HIF1A and VEGFA expression levels and their subsequent decrease. However, imaging methods (both PET and fluorescence microscopy) showed that hypoxia increased till day 14 of tumor development. Additionally, necrotic regions dominated the tumor tissue at later stages of development, decreasing the number of hypoxic areas and completely eliminating normoxic regions (observed by PET). These results showed that molecular methods of hypoxia determination are more sensitive to show changes undergoing at cellular level, however in order to measure and visualize hypoxia in the whole organ, especially at later stages of tumor development, PET is the preferred tool. Furthermore we concluded, that during development of tumor, two peaks of hypoxia occur.


Asunto(s)
Carcinoma/fisiopatología , Neoplasias Colorrectales/fisiopatología , Hipoxia/fisiopatología , Animales , Carcinoma/diagnóstico por imagen , Carcinoma/patología , Hipoxia de la Célula , Línea Celular Tumoral , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Hipoxia/diagnóstico por imagen , Hipoxia/patología , Ratones Endogámicos BALB C , Necrosis , Trasplante de Neoplasias , Microambiente Tumoral
12.
Molecules ; 23(7)2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30036947

RESUMEN

The rapid increase in applications of scandium isotopes in nuclear medicine requires new efficient production routes for these radioisotopes. Recently, irradiations of calcium in cyclotrons by α, deuteron, and proton beams have been used. Therefore, effective post-irradiation separation and preconcentration of the radioactive scandium from the calcium matrix are important to obtain the pure final product in a relatively small volume. Nobias resin was used as a sorbent for effective separation of 44Sc from calcium targets. Separation was performed at pH 3 using a column containing 10 mg of resin. Scandium was eluted with 100 µL of 2 mol L-1 HCl. Particular attention was paid to the reduction of calcium concentration, presence of metallic impurities, robustness and simple automation. 44Sc was separated with 94.9 ± 2.8% yield, with results in the range of 91.7⁻99.0%. Purity of the eluate was confirmed with ICP-OES determination of metallic impurities and >99% chelation efficiency with DOTATATE, followed by >36 h radiochemical stability of the complex. A wide range of optimal conditions and robustness to target variability and suspended matter facilitates the proposed method in automatic systems for scandium isotope separation and synthesis of scandium-labeled radiopharmaceuticals.


Asunto(s)
Carbonato de Calcio/química , Octreótido/síntesis química , Radioisótopos/química , Escandio/química , Concentración de Iones de Hidrógeno , Octreótido/química , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Tomografía de Emisión de Positrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...