Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(21): eadm9311, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787950

RESUMEN

Palladium (Pd) and gold (Au) are the most often used precious metals (PMs) in industrial catalysis and electronics. Green recycling of Pd and Au is crucial and difficult. Here, we report a peroxydisulfate (PDS)-based advanced oxidation process (AOPs) for selectively recovering Pd and Au from spent catalysts. The PDS/NaCl photochemical system achieves complete dissolution of Pd and Au. By introducing Fe(II), the PDS/FeCl2·4H2O solution functioned as Fenton-like system, enhancing the leaching efficiency without xenon (Xe) lamp irradiation. Electron paramagnetic resonance (EPR), 18O isotope tracing experiments, and density functional theory calculations revealed that the reactive oxidation species of SO4·-, ·OH, and Fe(IV)═O were responsible for the oxidative dissolution process. Lixiviant leaching and one-step electrodeposition recovered high-purity Pd and Au. Strong acids, poisonous cyanide, and volatile organic solvents were not used during the whole recovery, which enables an efficient and sustainable precious metal recovery approach and encourage AOP technology for secondary resource recycling.

2.
Adv Sci (Weinh) ; 11(14): e2308663, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311580

RESUMEN

The incorporation of crown ether into metal-organic frameworks (MOFs) is garnered significant attention because these macrocyclic units can fine-tune the inherent properties of the frameworks. However, the synthesis of flexible crown ethers with precise structures as the fundamental building blocks of crystalline MOFs remains a challenging endeavor, with only a limited number of transition metal examples existing to date. Herein, 18-crown-6 and 24-crown-8 struts are successfully incorporated into the skeleton of zirconium-based MOFs to obtain two new and stable crown ether-based MOFs, denoted as ZJU-X100 and ZJU-X102. These newly developed MOFs displayed high porosity and remarkable stability when exposed to various solvents, boiling water, pH values, and even concentrated HCl conditions. Thanks to their highly ordered porous structure and high-density embedding of specific binding sites within tubular channels, these two MOFs exhibited extremely fast sorption kinetics and demonstrated outstanding performance in the uptake of strontium and cesium ions, respectively. Furthermore, the structures of Sr-adsorbed ZJU-X100 and Cs-adsorbed ZJU-X102 are solved and confirmed the precise location of Sr2+/Cs+ in the cavity of 18-crown-6/24-crown-8. This makes modular mosaic of different crown ethers into the skeleton of stable zirconium-based MOFs possible and promote such materials have broad applications in sorption, sensing, and catalysis.

3.
Small ; : e2308451, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059738

RESUMEN

Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3 I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3 I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2 O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2 ) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3 I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1 , respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3 I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3 I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.

4.
ACS Appl Mater Interfaces ; 15(34): 40438-40450, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37581564

RESUMEN

Radioactive waste management is critical for maintaining the sustainability of nuclear fuel cycles. In this study, we propose a novel bismuth-based reduced graphene oxide (Bi0-rGO) composite for the immobilization of off-gas radioactive iodine. This material synthesized via a solvothermal route exhibited a low surface area (2.96 m2/g) combined with a maximum iodine sorption capacity of 1228 ± 25 mg/g at 200 °C. The iodine sorbent was mixed with Bi2O3 powder and distilled water to fabricate waste matrices, which were cold-sintered at 300 °C under a uniaxial pressure of 500 MPa for 20 min to achieve a relative density of ∼98% and Vickers hardness of 1.3 ± 0.1 GPa. The utilized methodology reduced the iodine leaching rate by approximately 3 orders of magnitude through the formation of a chemically durable iodine-bearing waste form (BiOI). This study demonstrates the high potential of Bi0-rGO as an innovative solution for the immobilization of radioactive waste at relatively low temperatures.

5.
J Hazard Mater ; 417: 125978, 2021 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-34015715

RESUMEN

Developing an efficient and cheap iodine sorbent is of great practical significance in the modern nuclear industry. In this work, novel bismuth and silver functionalized Ni foam composites as iodine sorption materials (Bi-Ni foam and Ag-Ni foam) were successfully prepared via a simple solvothermal method. Through a series of iodine sorption experiments and characterization methods, iodine capture properties and corresponding sorption mechanism were comprehensively compared and thoroughly revealed. The results show that the core-sheath structure formed by the solvothermal reaction can supply more active sites (Bi0 or Ag0 particles) for the contact of radioactive iodine gas, thereby improving the sorption capacity of sorbents. Compared with Ag-Ni foam (456 mg/g), Bi-Ni foam exhibits a higher iodine capture capacity (658 mg/g), whereas silver-based material has a faster sorption kinetics. Such excellent sorption performances were attributed to the chemical reaction between Bi0/Ag0 particles and iodine gas, generating stable BiI3/AgI. In addition, this type of sorbents inherits the external structure of the Ni foam skeleton, decreasing the physically sorbed iodine, and can be prepared in different shapes and sizes, which is of great practical significance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...