Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Front Plant Sci ; 13: 983830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160996

RESUMEN

Cadmium (Cd) is one the leading environmental contaminants. The Cd toxicity and its potential stabilization strategies have been investigated in the recent years. However, the combined effects of biochar and microorganisms on the adsorption of Cd and maize plant physiology, still remained unclear. Therefore, this experiment was conducted to evaluate the combined effects of biochar (BC) pyrolyzed from (maize-straw, cow-manure, and poultry-manure, and microorganisms [Trichoderma harzianum (fungus) and Bacillus subtilis (bacteria)], on plant nutrient uptake under various Cd-stress levels (0, 10, and 30 ppm). The highest level of Cd stress (30 ppm) caused the highest reduction in maize plant biomass, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate as compared to control Cd0 (0 ppm). The sole application of BC and microorganisms significantly improved plant growth, intercellular CO2, transpiration rate, water use efficiency, stomatal conductance, and photosynthesis rate and caused a significant reduction in root and shoot Cd. However, the co-application of BC and microorganisms was more effective than the sole applications. In this regard, the highest improvement in plant growth and carbon assimilation, and highest reduction in root and shoot Cd was recorded from co-application of cow-manure and combined inoculation of Trichoderma harzianum (fungus) + Bacillus subtilis (bacteria) under Cd stress. However, due to the aging factor and biochar leaching alkalinity, the effectiveness of biochar in removing Cd may diminish over time, necessitating long-term experiments to improve understanding of biochar and microbial efficiency for specific bioremediation aims.

2.
Ecotoxicol Environ Saf ; 230: 113165, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998263

RESUMEN

In modern agriculture and globalization, the release of trace metals from manufacturing effluents hinders crop productivity by polluting the atmosphere and degrading food quality. Sustaining food safety in polluted soils is critical to ensure global food demands. This review describes the negative effects of trace metals stress on plant growth, physiology, and yield. Furthermore, also explains the potential of biochar in the remediation of trace metal's contaminations in plants by adoption of various mechanisms such as reduction, ion exchange, electrostatic forces of attraction, precipitation, and complexation. Biochar application enhances the overall productivity, accumulation of biomass, and photosynthetic activity of plants through the regulation of various biochemical and physiological mechanisms of plants cultivated under trace metals contaminated soil. Moreover, biochar scavenges the formation of reactive oxygen species, by activating antioxidant enzyme production i.e., ascorbate peroxidase, catalase, superoxide dismutase, peroxidase, etc. The application of biochar also improves the synthesis of stressed proteins and proline contents in plants thus maintaining the osmoprotectant and osmotic potential of the plant under contaminates stress. Integrated application of biochar with other amendments i.e., microorganisms and plant nutrients to improve trace metal remediation potential of biochar and improving crop production was also highlighted in this review. Moreover, future research needs regarding the application of biochar have also been addressed.

3.
Environ Res ; 197: 111031, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33744268

RESUMEN

Extraction and exploration of petroleum hydrocarbons (PHs) to satisfy the rising world population's fossil fuel demand is playing havoc with human beings and other life forms by contaminating the ecosystem, particularly the soil. In the current review, we highlighted the sources of PHs contamination, factors affecting the PHs accumulation in soil, mechanisms of uptake, translocation and potential toxic effects of PHs on plants. In plants, PHs reduce the seed germination andnutrients translocation, and induce oxidative stress, disturb the plant metabolic activity and inhibit the plant physiology and morphology that ultimately reduce plant yield. Moreover, the defense strategy in plants to mitigate the PHs toxicity and other potential remediation techniques, including the use of organic manure, compost, plant hormones, and biochar, and application of microbe-assisted remediation, and phytoremediation are also discussed in the current review. These remediation strategies not only help to remediate PHs pollutionin the soil rhizosphere but also enhance the morphological and physiological attributes of plant and results to improve crop yield under PHs contaminated soils. This review aims to provide significant information on ecological importance of PHs stress in various interdisciplinary investigations and critical remediation techniques to mitigate the contamination of PHs in agricultural soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Ecosistema , Humanos , Hidrocarburos/toxicidad , Petróleo/toxicidad , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
4.
Ecotoxicol Environ Saf ; 214: 112112, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33714140

RESUMEN

Sole biochar addition or microbial inoculation as a soil amendment helps to reduce cadmium (Cd) toxicity in polluted agricultural soils. Yet the synergistic effects of microorganisms and biochar application on Cd absorption and plant productivity remain unclear. Therefore, a pot experiment was conducted to investigate the combined effect of microorganisms (Trichoderma harzianum L. and Bacillus subtilis L.), biochar (maize straw, cow manure, and poultry manure), and Cd (0, 10, and 30 ppm) on plant physiology and growth to test how biochar influences microbial growth and plant nutrient uptake, and how biochar ameliorates under Cd-stressed soil. Results showed that in comparison to non-Cd polluted soil, the highest reduction in chlorophyll content, photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, and intercellular CO2 were observed in Cd2 (30 ppm), which were 9.34%, 22.95%, 40.45%, 29.07%, 20.67%, and 22.55% respectively less than the control Cd0 (0 ppm). Among sole inoculation of microorganisms, highest stomatal conductance, water use efficiency, and intercellular CO2 were recorded with combined inoculation of both microorganisms (M3), which were 5.92%, 7.65%, and 7.28% respectively higher than the control, and reduced the Cd concentration in soil, root, and shoot by 21.34%, 28.36%, and 20.95%, respectively, compared to the control. Similarly, co-application of microorganisms and biochar ameliorated the adverse effect of Cd in soybean as well as significantly improved plant biomass, photosynthetic activity, nutrient contents, and antioxidant enzyme activities, and minimized the production of reactive oxygen species and Cd content in plants. Soil amended with poultry manure biochar had significantly improved the soil organic carbon, total nitrogen, total phosphorous, and available potassium by 43.53%, 36.97%, 22.28%, and 4.24%, respectively, and decreased the concentration of Cd in plant root and shoot by 34.68% and 47.96%, respectively, compared to the control. These findings indicate that the combined use of microorganisms and biochar as an amendment have important synergistic effects not only on the absorption of nutrients but also on the reduction of soybean Cd intake, and improve plant physiology of soybean cultivated in Cd-polluted soils as compared to sole application of microorganisms or biochar.


Asunto(s)
Bacillus subtilis , Cadmio/análisis , Carbón Orgánico , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Hypocreales , Contaminantes del Suelo/análisis , Cadmio/metabolismo , Estiércol , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Potasio/metabolismo , Contaminantes del Suelo/metabolismo , Zea mays
5.
Ecotoxicol Environ Saf ; 211: 111887, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33450535

RESUMEN

Cadmium (Cd) is an unessential trace element in plants that is ubiquitous in the environment. Anthropogenic activities such as disposal of urban refuse, smelting, mining, metal manufacturing, and application of synthetic phosphate fertilizers enhance the concentration of Cd in the environment and are carcinogenic to human health. In this manuscript, we reviewed the sources of Cd contamination to the environment, soil factors affecting the Cd uptake, the dynamics of Cd in the soil rhizosphere, uptake mechanisms, translocation, and toxicity of Cd in plants. In crop plants, the toxicity of Cd reduces uptake and translocation of nutrients and water, increases oxidative damage, disrupts plant metabolism, and inhibits plant morphology and physiology. In addition, the defense mechanism in plants against Cd toxicity and potential remediation strategies, including the use of biochar, minerals nutrients, compost, organic manure, growth regulators, and hormones, and application of phytoremediation, bioremediation, and chemical methods are also highlighted in this review. This manuscript may help to determine the ecological importance of Cd stress in interdisciplinary studies and essential remediation strategies to overcome the contamination of Cd in agricultural soils.


Asunto(s)
Biodegradación Ambiental , Cadmio/toxicidad , Restauración y Remediación Ambiental , Contaminantes del Suelo/toxicidad , Agricultura , Cadmio/metabolismo , Carbón Orgánico , Compostaje , Fertilizantes , Humanos , Estiércol , Metales , Rizosfera , Suelo , Contaminantes del Suelo/análisis , Oligoelementos
6.
Environ Sci Pollut Res Int ; 27(35): 44528-44539, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32772285

RESUMEN

Lead (Pb) is considered an important environmental contaminant due to its considerable toxicity to living organisms. It can enter and accumulate in plant tissues and become part of the food chain. In the present study, individual and combined effects of Bacillus sp. MN-54 and phosphorus (P) on maize growth and physiology were evaluated in Pb-contaminated soil. A pristine soil was artificially contaminated with two levels of Pb (i.e., 250 and 500 mg kg-1 dry soil) and was transferred to plastic pots. Bacillus sp. MN-54 treated and untreated maize (DK-6714) seeds were planted in pots. Recommended doses of nutrients (N and K) were applied in each pot while P was applied in selective pots. Results showed that Pb stress hampered the maize growth and physiological attributes in a concentration-dependent manner, and significant reductions in seedling emergence, shoot and root lengths, fresh and dry biomasses, leaf area, chlorophyll content, rate of photosynthesis, and stomatal conductance were recorded compared with control. Application of Bacillus sp. MN-54 or P particularly in combination significantly reduced the toxic effects of Pb on maize. At higher Pb level (500 mg kg-1), the combined application effectively reduced Pb uptake up to 42.4% and 50% by shoots, 30.8% and 33.9% by roots, and 18.4% and 26.2% in available Pb content in soil after 45 days and 90 days, respectively compared with that of control. Moreover, the use of Bacillus sp. MN-54 significantly improved the P uptake by maize plants by 44.4% as compared with that of control. Our findings suggest that the combined use of Bacillus sp. MN-54 and P could be effective and helpful in improving plant growth and Pb immobilization in Pb-contaminated soil.


Asunto(s)
Bacillus , Contaminantes del Suelo , Biodegradación Ambiental , Plomo , Manganeso , Fósforo , Raíces de Plantas/química , Radioisótopos , Suelo , Contaminantes del Suelo/análisis , Zea mays
7.
PLoS One ; 15(4): e0232150, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32298387

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0230720.].

8.
J Microbiol Biotechnol ; 30(6): 839-847, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32160699

RESUMEN

In the present study, an anaerobic microbial consortium for the degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) was selectively enriched with the co-addition of RDX and starch under nitrogen-deficient conditions. Microbial growth and anaerobic RDX biodegradation were effectively enhanced by the co-addition of RDX and starch, which resulted in increased RDX biotransformation to nitroso derivatives at a greater specific degradation rate than those for previously reported anaerobic RDX-degrading bacteria (isolates). The accumulation of the most toxic RDX degradation intermediate (MNX [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine]) was significantly reduced by starch addition, suggesting improved RDX detoxification by the co-addition of RDX and starch. The subsequent MiSeq sequencing that targeted the bacterial 16S rRNA gene revealed that the Sporolactobacillus, Clostridium, and Paenibacillus populations were involved in the enhanced anaerobic RDX degradation. These results suggest that these three bacterial populations are important for anaerobic RDX degradation and detoxification. The findings from this work imply that the Sporolactobacillus, Clostridium, and Paenibacillus dominant microbial consortium may be valuable for the development of bioremediation resources for RDX-contaminated environments.


Asunto(s)
Biodegradación Ambiental , Bacilos Grampositivos Formadores de Endosporas , Consorcios Microbianos , Almidón/metabolismo , Triazinas/metabolismo , Anaerobiosis , ADN Bacteriano/genética , Sustancias Explosivas , Bacilos Grampositivos Formadores de Endosporas/genética , Bacilos Grampositivos Formadores de Endosporas/metabolismo , Consorcios Microbianos/genética , Consorcios Microbianos/fisiología , ARN Ribosómico 16S/genética , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Triazinas/química
9.
Sci Total Environ ; 721: 137778, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32179352

RESUMEN

Nanotechnology has shown promising potential to promote sustainable agriculture. This article reviews the recent developments on applications of nanotechnology in agriculture including crop production and protection with emphasis on nanofertilizers, nanopesticides, nanobiosensors and nano-enabled remediation strategies for contaminated soils. Nanomaterials play an important role regarding the fate, mobility and toxicity of soil pollutants and are essential part of different biotic and abiotic remediation strategies. Efficiency and fate of nanomaterials is strongly dictated by their properties and interactions with soil constituents which is also critically discussed in this review. Investigations into the remediation applications and fate of nanoparticles in soil remain scarce and are mostly limited to laboratory studies. Once entered in the soil system, nanomaterials may affect the soil quality and plant growth which is discussed in context of their effects on nutrient release in target soils, soil biota, soil organic matter and plant morphological and physiological responses. The mechanisms involved in uptake and translocation of nanomaterials within plants and associated defense mechanisms have also been discussed. Future research directions have been identified to promote the research into sustainable development of nano-enabled agriculture.

10.
Chemosphere ; 249: 126072, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32045751

RESUMEN

The ability to immobilise PFAS in soil may be an essential interim tool while technologies are developed for effective long-term treatment of PFAS contaminated soils. Serial sorption experiments were undertaken using a pine derived biochar produced at 750 °C (P750). All experiments were carried out either in individual mode (solution with one PFAS at 5 µg/L) or mix mode (solution with 5 µg/L of each: PFOS, PFOA, PFHxS and PFHxA), and carried out in 2:1 water to soil solutions. Soils had biochar added in the range 0-5% w/w. Kinetic data were fitted to the pseudo-second order model for both amended soils, with equilibrium times ranging 0.5-96 h for all congeners. PFOS sorption was 11.1 ± 4.5% in the loamy sand compared to 69.8 ± 4.9% in the sandy clay loam. While total sorption was higher in the unamended loamy sand than sandy clay loam for PFHxA, PFOA and PFOS, the effect of biochar amendment for each compound was found to be significantly higher in amended sandy clay loam than in amended loamy sand. Application of biochar reduced the desorbed PFAS fraction of all soils. Soil type and experimental mode played a significant role in influencing desorption. Overall, the relationship between sorbent and congener was demonstrated to be highly impacted by soil type, however the unique physiochemical properties of each PFAS congener greatly influenced its unique equilibrium, sorption and desorption behaviour for each amended soil and mode tested.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Contaminantes del Suelo/aislamiento & purificación , Suelo/química , Adsorción , Ácidos Alcanesulfónicos/aislamiento & purificación , Caprilatos/aislamiento & purificación , Contaminación Ambiental , Fluorocarburos/aislamiento & purificación , Contaminantes del Suelo/análisis
11.
Plant Physiol Biochem ; 132: 641-651, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30340176

RESUMEN

Nickel (Ni) is becoming a toxic pollutant in agricultural environments. Due to its diverse uses from a range of common household items to industrial applications, it is essential to examine Ni bioavailability in soil and plants. Ni occurs in the environment (soil, water and air) in very small concentrations and eventually taken up by plants through roots once it becomes available in soil. It is an essential nutrient for normal plant growth and development and required for the activation of several enzymes such as urease, and glyoxalase-I. Ni plays important roles in a wide range of physiological processes including seed germination, vegetative and reproductive growth, photosynthesis as well as in nitrogen metabolism. Therefore, plants cannot endure their life cycle without adequate Ni supply. However, excessive Ni concentration can lead to induce ROS production affecting numerous physiological and biochemical processes such as photosynthesis, transpiration, as well as mineral nutrition and causes phytotoxicity in plants. ROS production intensifies the disintegration of plasma membranes and deactivates functioning of vital enzymes through lipid peroxidation. This review article explores the essential roles of Ni in the life cycle of plant as well as its toxic effects in details. In conclusion, we have proposed different viable approaches for remediation of Ni-contaminated soils.


Asunto(s)
Ambiente , Níquel/toxicidad , Plantas/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Cadena Alimentaria , Plantas/efectos de los fármacos , Suelo/química
12.
Ecotoxicol Environ Saf ; 147: 935-944, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29029379

RESUMEN

Industrialization and urbanization have posed serious threats to the environment. Excessive release of heavy metals from industrial effluents and overuse of pesticides in modern agriculture are limiting crop production by polluting environment and deteriorating food quality. Sustaining food quality under heavy metals and pesticide stress is crucial to meet the increasing demands for food. 24-Epibrassinolide (EBL), a ubiquitously occurring plant growth hormone shows great potential to alleviate heavy metals and pesticide stress in plants. This review sums up the potential role of EBL in ameliorating heavy metals and pesticide toxicity in plants extensively. EBL application increases plant's overall growth, biomass accumulation and photosynthetic efficiency by the modulation of numerous biochemical and physiological processes under heavy metals and pesticide stress. In addition, EBL scavenges reactive oxygen species (ROS) by triggering the production of antioxidant enzymes such as SOD, CAT, POX etc. EBL also induces the production of proline and soluble proteins that helps in maintaining osmotic potential and osmo-protection under both heavy metals and pesticide stress. At the end, future needs of research about the application of 24-epibrassinolide have also been discussed.


Asunto(s)
Brasinoesteroides/farmacología , Productos Agrícolas/efectos de los fármacos , Metales Pesados/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plaguicidas/toxicidad , Reguladores del Crecimiento de las Plantas/farmacología , Contaminantes del Suelo/toxicidad , Esteroides Heterocíclicos/farmacología , Antioxidantes/metabolismo , Productos Agrícolas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Environ Sci Pollut Res Int ; 23(18): 18129-36, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27259960

RESUMEN

The present study was conducted to evaluate the effect of two non ionic surfactants (Tween 80 and Triton X-100), a biosurfactant (Lecithin), and randomly methylated-ß-cyclodextrins (RAMEB) on the remediation of pyrene from soil planted with tall fescue (Festuca arundinacea). Soils with pyrene concentration of about 243 mg kg(-1) was grown with tall fescue and were individually amended with 0, 200, 600, 1000, and 1500 mg kg(-1) of Tween 80, Triton X-100, biosurfactant, and RAMEB. The results show that all surfactants significantly increased plant biomass compared to unamended soil. Dehydrogenase activity was also stimulated as a result of surfactant addition. Only 3.9 and 3.2 % of pyrene was decreased in the uncovered and covered abiotic sterile control, suggesting that microbial degradation was the main removal mechanism of pyrene from soil. In the planted treatment receiving no surfactant, the remediation of pyrene was 45 % which is significantly higher than that of corresponding unplanted control soil, suggesting that the cultivation of tall fescue alone could enhance the overall remediation of pyrene in soil. All surfactants had significantly higher rates of pyrene remediation compared to the unamended planted soil. Generally, RAMEB displayed the highest remediation rates, i.e., 64.4-79.1 % followed by the Triton X-100, i.e., 60.1-74.8 %. The positive impact of surfactants on pyrene remediation could possibly be because of their capacities to increase its bioavailability in soil. The evidence from this study suggests that the addition of surfactants could enhance phytoremediation of PAHs polluted soil.


Asunto(s)
Festuca/metabolismo , Octoxinol/farmacología , Polisorbatos/farmacología , Pirenos/metabolismo , Rizosfera , Tensoactivos/farmacología , Biodegradación Ambiental , Biomasa , Suelo , beta-Ciclodextrinas/farmacología
14.
Plant Physiol Biochem ; 107: 104-115, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27262404

RESUMEN

Lithium (Li) is a naturally occurring element; however, it is one of the non-essential metals for life. Lithium is becoming a serious matter of discussion for the people who do research on trace metals and environmental toxicity in plants. Due to limited information available regarding its mobility from soil to plants, the adverse effects of Li toxicity to plants are still unclear. This article briefly discusses issues around Li, its role and its essentiality in plants and research directions that may assist in inter-disciplinary studies to evaluate the importance of Li's toxicity. Further, potential remediation approaches will also be highlighted in this review. Briefly, Li influenced the growth of plants in both stimulation and reduction ways, depending on the concentration of Li in growth medium. On the negative side, Li reduces the plant growth by interrupting numerous physiological processes and altering metabolism in plant. The contamination of soil by Li is becoming a serious problem, which might be a threat for crop production in the near future. Additionally, lack of considerable information about the tolerance mechanisms of plants further intensifies the situation. Therefore, future research should emphasize in finding prominent and approachable solutions to minimize the entry of Li from its sources (especially from Li batteries) into the soil and food chain.


Asunto(s)
Litio/toxicidad , Plantas/efectos de los fármacos , Biodegradación Ambiental/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Modelos Biológicos
15.
Arch Environ Contam Toxicol ; 65(1): 47-55, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23440446

RESUMEN

A battery of bioassays was used to assess the ecotoxicological risk of soil spiked with a range of phenanthrene levels (0.95, 6.29, 38.5, 58.7, 122, and 303 µg g(-1) dry soil) and aged for 69 days. Multiple species (viz. Brassica rapa, Eisenia feotida, Vibrio fischeri), representing different trophic levels, were used as bioindicator organisms. Among acute toxicity assays tested, the V. fischeri luminescence inhibition assay was the most sensitive indicator of phenanthrene biotoxicity. More than 15 % light inhibition was found at the lowest phenanthrene level (0.95 µg g(-1)). Furthermore, comet assay using E. fetida was applied to assess genotoxicity of phenanthrene. The strong correlation (r (2) ≥ 0.94) between phenanthrene concentration and DNA damage indicated that comet assay is appropriate for testing the genotoxic effects of phenanthrene-contaminated soil. In the light of these results, we conclude that the Microtox test and comet assay are robust and sensitive bioassays to be employed for the risk evaluation of polycyclic aromatic hydrocarbon-contaminated soil.


Asunto(s)
Bioensayo/métodos , Fenantrenos/toxicidad , Contaminantes del Suelo/toxicidad , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/crecimiento & desarrollo , Animales , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Ensayo Cometa/métodos , Daño del ADN/efectos de los fármacos , Germinación/efectos de los fármacos , Oligoquetos/efectos de los fármacos , Oligoquetos/crecimiento & desarrollo , Sensibilidad y Especificidad , Pruebas de Toxicidad Aguda/métodos , Pruebas de Toxicidad Subcrónica/métodos
16.
Arch Environ Contam Toxicol ; 63(4): 503-12, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22941450

RESUMEN

A test battery, composed of a range of biological assays, was applied to evaluate the ecological health of soil aged for 69 days and spiked with a range of pyrene levels (1.04, 8.99, 41.5, 72.6, 136, and 399 µg g(-1) dry soil; Soxhlet-extracted concentrations after 69 days of aging). Chinese cabbage (Brassica rapa), earthworm (Eisenia fetida), and bacteria (Vibrio fischeri) were used as test organisms to represent different trophic levels. Among the acute ecotoxicity bioassays used, the V. fischeri luminescence inhibition assay was the most sensitive indicator of pyrene toxicity. We observed >8 % light inhibition at the lowest concentration (1.04 µg g(-1)) pyrene, and this inhibition increased to 60 % at 72.6 µg g(-1). The sensitivity ranking for toxicity of the pyrene-contaminated soil in the present study was in the following decreasing order: root elongation of Chinese cabbage < earthworm mortality (14 days) < earthworm mortality (28 days) < luminescence inhibition (15 min) < luminescence inhibition (5 min). In addition, genotoxic effects of pyrene were also evaluated by using comet assay in E. fetida. The strong relationship between DNA damage and soil pyrene levels showed that comet assay is suitable for testing the genotoxicity of pyrene-polluted soil. In addition, tail moment was well correlated with soil pyrene levels (r (2) = 0.99). Thus, tail moment may be the most informative DNA-damage parameter representing the results of comet assay. Based on these results, the earthworm DNA damage assay and Microtox test are rapid and sensitive bioassays and can be used to assess the risk of soil with low to high levels of hydrocarbon pollution. Furthermore, an analysis of the toxic effects at several trophic levels is essential for a more comprehensive understanding of the damage caused by highly contaminated soil.


Asunto(s)
Bioensayo/métodos , Pirenos/toxicidad , Suelo/análisis , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/crecimiento & desarrollo , Animales , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Ensayo Cometa/métodos , Daño del ADN/efectos de los fármacos , Germinación/efectos de los fármacos , Oligoquetos/efectos de los fármacos , Oligoquetos/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Suelo/química , Contaminantes del Suelo/análisis , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subcrónica
17.
Environ Monit Assess ; 184(1): 549-59, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21866434

RESUMEN

It has become apparent that the threat of an organic pollutant in soil is directly related to its bioavailable fraction and that the use of total contaminant concentrations as a measure of potential contaminant exposure to plants or soil organisms is inappropriate. In light of this, non-exhaustive extraction techniques are being investigated to assess their appropriateness in determining bioavailability. To find a suitable and rapid extraction method to predict phenanthrene bioavailability, multiple extraction techniques (i.e., mild hydroxypropyl-ß-cyclodextrin (HPCD) and organic solvents extraction) were investigated in soil spiked to a range of phenanthrene levels (i.e., 1.12, 8.52, 73, 136, and 335 µg g( - 1) dry soil). The bioaccumulation of phenanthrene in earthworm (Eisenia fetida) was used as the reference system for bioavailability. Correlation results for phenanthrene suggested that mild HPCD extraction was a better method to predict bioavailability of phenanthrene in soil compared with organic solvents extraction. Aged (i.e., 150 days) and fresh (i.e., 0 day) soil samples were used to evaluate the extraction efficiency and the effect of soil contact time on the availability of phenanthrene. The percentage of phenanthrene accumulated by earthworms and percent recoveries by mild extractants changed significantly with aging time. Thus, aging significantly reduced the earthworm uptake and chemical extractability of phenanthrene. In general, among organic extractants, methanol showed recoveries comparable to those of mild HPCD for both aged and unaged soil matrices. Hence, this extractant can be suitable after HPCD to evaluate risk of contaminated soils.


Asunto(s)
Fraccionamiento Químico/métodos , Fenantrenos/farmacocinética , Contaminantes del Suelo/farmacocinética , Suelo/química , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Disponibilidad Biológica , Monitoreo del Ambiente/métodos , Oligoquetos , Fenantrenos/química , Plantas , Contaminantes del Suelo/química , Factores de Tiempo , beta-Ciclodextrinas/química
18.
Arch Environ Contam Toxicol ; 60(1): 107-15, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20437042

RESUMEN

Bioavailability of organic pollutants in soil is currently a much-debated issue in risk assessment of contaminated sites. Ecorisk of an organic pollutant in soil is strongly influenced by the properties of the soil and its contamination history. To evaluate the effect of aging on the availability of pyrene, earthworm (Eisenia fetida) accumulation and chemical extraction by exhaustive and nonexhaustive techniques in soil spiked with a range of pyrene levels (1.07, 9.72, 88.4, 152, and 429 µg g⁻¹ dry soil) were measured in this study using both unaged (i.e., 0 days) and aged (i.e., 69, 150, and 222 days) soil samples. The results showed that the amount of pyrene accumulated by earthworms did not change greatly with aging time under different high-dose contamination levels, but changed significantly at lower concentrations. Moreover, aging (after 222 days) significantly decreased biological and chemical availability of pyrene. Furthermore, the relationship between earthworm bioaccumulation, hydroxypropyl-ß-cyclodextrin (HPCD), and organic solvent extraction was investigated in order to find a suitable and rapid method to predict pyrene bioavailability. Results showed that, at different levels of pyrene, the mean values of earthworm uptake and HPCD extractability were 10-40% and 10-65%, respectively. Correlation (r² = 0.985) and extraction results for pyrene suggested that mild HPCD extraction was a better method to predict bioavailability of pyrene in soil compared with organic solvent extraction.


Asunto(s)
Monitoreo del Ambiente/métodos , Oligoquetos/metabolismo , Pirenos/análisis , Contaminantes del Suelo/análisis , beta-Ciclodextrinas/análisis , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Biodegradación Ambiental , Pirenos/metabolismo , Suelo/análisis , Contaminantes del Suelo/metabolismo , Solventes/análisis , Solventes/metabolismo , beta-Ciclodextrinas/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-20535879

RESUMEN

The present study investigated the levels, distributions, profiles and possible sources of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils around Zeguo, an emerging e-waste recycling town in Taizhou area, China. Concentrations of sixteen USEPA priority PAHs and soil organic matter were analyzed in 59 agricultural soil samples. The total PAH concentrations ranged from 262.6 to 3,420.2 microg/kg, with the average values in a gradually descending order: agricultural soil near e-waste recycling plants and workshops (1,336.0 microg/kg) > agricultural soil in villages with open burning and e-waste recycling activities (945.8 microg/kg) > agricultural soil in other villages (466.5 microg/kg). Analysis of the distribution patterns of the PAHs showed that phenanthrene, anthracene, fluoranthene and pyrene were the dominant species. The significant correlations among individual, low-molecular-weight (LMW), high-molecular-weight (HMW) and total PAHs and the very similar PAH profiles in the three sampling areas indicated that the PAHs might have come from similar sources. The ratios of Anthracene to sum of Anthracene and Phenanthrene concentrations (Ant/(Ant+Phe)) and fluoranthene to sum of fluoranthene and pyrene concentrations (Flt/(Flt+Pyr)) were calculated and principal component analysis (PCA) was performed and the results suggested that an anthropogenic source such as the combustion of a petroleum product or coal during the e-waste recycling process seemed to be the main source of PAHs in the Zeguo agricultural soil. In conclusion, soils taken from Zeguo agricultural areas were considered to be heavily polluted, and the emerging e-waste recycling activities had definite effects on PAH soil concentrations.


Asunto(s)
Conservación de los Recursos Naturales , Residuos Industriales/efectos adversos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , Antracenos/análisis , China , Fluorenos/análisis , Geografía , Fenantrenos/análisis , Pirenos/análisis
20.
J Environ Monit ; 12(7): 1482-9, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20523947

RESUMEN

The objective in the first phase of this study was to screen four plant species (alfalfa, ryegrass, tall fescue and rice) for phytoremediation of aged polychlorinated biphenyl (PCB)-contaminated soil from an electronic and electric waste (e-waste) recycling site. Glucose, biphenyl and three surfactants (TritonX-100, randomly methylated-beta-cyclodextrins and beta-cyclodextrin) were used to enhance the phytoremediation process. During the second phase, the focus was rhizosphere characteristics and plant uptake to investigate the mechanism of PCB removal from soil. In the first phase, all the tested plant species showed a significantly greater PCB removal percentage compared to the unplanted controls, while different amendments showed no significant difference. The most effective plant (ryegrass) combined with beta-cyclodextrin was selected for further studies. During the rhizosphere characteristics and plant uptake study, the highest PCB removal percentage (38.1%) was observed in the ryegrass planted soil when beta-cyclodextrin was amended at 1.0% (w/w). The presence of plants significantly increased the biological activity (microbial counts and enzyme activity) of both beta-cyclodextrin amended and non-amended soils. Higher levels of PCB removal were closely related to greater microbial counts and soil enzyme activities by correlation analysis. After 120 days of plant growth, ryegrass accumulated 708.7-820.1 ng PCBs/g in the root and 71.7-110.8 ng PCBs/g in the shoot, resulting in about 0.08% PCBs removal from soil. It was concluded that high PCB degradation was due to the increased PCB bioavailability as well as biostimulation of microbial communities after plantation and beta-cyclodextrin addition. Furthermore, results suggested that PCB removal was mainly contributed by microbial degradation rather than plant uptake or abiotic dissipation.


Asunto(s)
Equipos y Suministros Eléctricos , Plantas/metabolismo , Bifenilos Policlorados/metabolismo , Contaminantes del Suelo/metabolismo , Administración de Residuos/métodos , beta-Ciclodextrinas/química , Bacterias/metabolismo , Biodegradación Ambiental , Compuestos de Bifenilo/química , Compuestos de Bifenilo/metabolismo , Festuca/metabolismo , Hongos/metabolismo , Glucosa/química , Glucosa/metabolismo , Lolium/metabolismo , Medicago sativa/metabolismo , Octoxinol/química , Octoxinol/metabolismo , Oryza/metabolismo , Bifenilos Policlorados/análisis , Bifenilos Policlorados/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...