Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 43(8): 1383-1399, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37099805

RESUMEN

As the global climate warms, a key question is how increased leaf temperatures will affect tree physiology and the coupling between leaf and air temperatures in forests. To explore the impact of increasing temperatures on plant performance in open air, we warmed leaves in the canopy of two mature evergreen forests, a temperate Eucalyptus woodland and a tropical rainforest. The leaf heaters consistently maintained leaves at a target of 4 °C above ambient leaf temperatures. Ambient leaf temperatures (Tleaf) were mostly coupled to air temperatures (Tair), but at times, leaves could be 8-10 °C warmer than ambient air temperatures, especially in full sun. At both sites, Tleaf was warmer at higher air temperatures (Tair > 25 °C), but was cooler at lower Tair, contrary to the 'leaf homeothermy hypothesis'. Warmed leaves showed significantly lower stomatal conductance (-0.05 mol m-2 s-1 or -43% across species) and net photosynthesis (-3.91 µmol m-2 s-1 or -39%), with similar rates in leaf respiration rates at a common temperature (no acclimation). Increased canopy leaf temperatures due to future warming could reduce carbon assimilation via reduced photosynthesis in these forests, potentially weakening the land carbon sink in tropical and temperate forests.


Asunto(s)
Bosques , Árboles , Temperatura , Aclimatación , Hojas de la Planta
2.
Oecologia ; 183(1): 31-43, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27798741

RESUMEN

Several previous studies have investigated the use of the stable hydrogen and oxygen isotope compositions in plant materials as indicators of palaeoclimate. However, accurate interpretation relies on a detailed understanding of both physiological and environmental drivers of the variations in isotopic enrichments that occur in leaf water and associated organic compounds. To progress this aim we measured δ18O and δ2H values in eucalypt leaf and stem water and δ18O values in leaf cellulose, along with the isotopic compositions of water vapour, across a north-eastern Australian aridity gradient. Here we compare observed leaf water enrichment, along with previously published enrichment data from a similar north Australian transect, to Craig-Gordon-modelled predictions of leaf water isotopic enrichment. Our investigation of model parameters shows that observed 18O enrichment across the aridity gradients is dominated by the relationship between atmospheric and internal leaf water vapour pressure while 2H enrichment is driven mainly by variation in the water vapour-source water isotopic disequilibrium. During exceptionally dry and hot conditions (RH < 21%, T > 37 °C) we observed strong deviations from Craig-Gordon predicted isotope enrichments caused by partial stomatal closure. The atmospheric-leaf vapour pressure relationship is also a strong predictor of the observed leaf cellulose δ18O values across one aridity gradient. Our finding supports a wider applicability of leaf cellulose δ18O composition as a climate proxy for atmospheric humidity conditions during the leaf growing season than previously documented.


Asunto(s)
Eucalyptus , Agua , Australia , Celulosa , Isótopos de Oxígeno , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA