Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Analyst ; 148(11): 2633-2643, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37191127

RESUMEN

A novel enhanced fluorescent sensor system for zearalenone (ZON) determination in flour samples is presented. The ZON-selective molecularly imprinted polymer (MIP) films were developed with a computational modelling method and synthesised with cyclododecyl-2,4-dihydroxybenzoate as a "dummy" template and ethylene glycol methacrylate phosphate as a functional monomer acted as the selective recognition elements for ZON fluorescence detection. Spherical silver nanoparticles (AgNPs) were embedded in the MIP films' structure to enhance the sensor sensitivity. The imprinted films showed a high ZON recognition ability compared to non-imprinted films. Various factors that affected the measurement of the analysed sample were investigated and optimised. Embedding the AgNPs in the MIP films' structure led to an enhanced sensitivity (up to a 200-fold decrease of LOD) compared to unmodified MIP films. This fluorescent sensor system provided ZON analysis with high sensitivity, specificity, and a wider linear dynamic range of 5 ng mL-1 to 25 µg mL-1. An enhanced fluorescent sensor system based on MIP chips with embedded AgNPs could detect trace amounts of ZON in foods and feedstuffs with high sensitivity and selectivity.


Asunto(s)
Nanopartículas del Metal , Impresión Molecular , Zearalenona , Polímeros Impresos Molecularmente , Plata , Nanopartículas del Metal/química , Polímeros/química , Impresión Molecular/métodos
2.
Analyst ; 147(6): 1135-1143, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35171150

RESUMEN

We demonstrate a novel sensor platform with enhanced sensitivity and selectivity for detecting aflatoxin B1 - a common food toxin in cereals. The approach is based on a molecularly imprinted polymer film that provides selective binding of the aflatoxin B1 and fluorescence signal from the analyte molecule enhanced by the local electric field induced in close proximity to the surface of a silver nanoparticle excited at the localized surface plasmon resonance (LSPR) wavelength. Molecularly imprinted polymers (MIPs) with supramolecular aflatoxin-selective receptor sites and embedded spherical silver nanoparticles (with diameters 30-70 nm, the LSPR band 407 nm) were prepared in the form of a thin polymer film on the surface of a glass slide using in situ polymerization. The detection limit of the sensor for aflatoxin B1 is 0.3 ng mL-1, which is significantly lower than for a fluorescent sensor without silver nanoparticles. The plasmon-enhanced fluorescence factor is 33, and the linear dynamic range of the sensor is 0.3-25 ng mL-1.


Asunto(s)
Aflatoxinas , Nanopartículas del Metal , Impresión Molecular , Nanopartículas del Metal/química , Plata , Resonancia por Plasmón de Superficie
3.
Nanoscale Res Lett ; 10: 99, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852395

RESUMEN

This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called 'hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of small-size objects.

4.
J Nanosci Nanotechnol ; 14(9): 6559-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25924300

RESUMEN

It is shown that the response of a surface plasmon resonance nanosystem designed according to Kretschmann geometry on the application of an external electric potential to the gold-electrolyte interface is well described by the proposed mathematical model, which takes into account the geometric surface imperfection and dependence of optical constants of the surface layer of gold film and capacitance of the electrical double layer on applied voltage. This model allows the appropriate correction for results of electrochemical surface plasmon resonance measurements. The dependence of a value of biomolecules adsorption in a surface plasmon resonance nanosystem on applied electric potential is shown for the first time. It is found that a shift of surface plasmon resonance angular position (Δθ(SPR)) and a change of capacitance of electrical double layer on the surface of gold (ΔC(dl)) for the adsorption of proteins under applied voltage are related to the nonlinear dependence Δθ(SPR) = (a + b x ΔC(dl))(-1). This phenomenon can be exploited in biochemical analysis to monitor the interaction of biomolecules, enhance response of biosensors, block unwanted adsorption, etc.


Asunto(s)
Técnicas Electroquímicas/instrumentación , Nanotecnología/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Adsorción , Electrodos , Diseño de Equipo , Oro/química , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...