Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
J Lipid Res ; 64(9): 100426, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37586604

RESUMEN

In the past 20 years, PCSK9 has been shown to play a pivotal role in LDL cholesterol metabolism and cardiovascular health by inducing the lysosomal degradation of the LDL receptor. PCSK9 was discovered by the cloning of genes up-regulated after apoptosis induced by serum deprivation in primary cerebellar neurons, but despite its initial identification in the brain, the precise role of PCSK9 in the nervous system remains to be clearly established. The present article is a comprehensive review of studies published or in print before July 2023 that have investigated the expression pattern of PCSK9, its effects on lipid metabolism as well as its putative roles specifically in the central and peripheral nervous systems, with a special focus on cerebrovascular and neurodegenerative diseases.


Asunto(s)
Sistema Nervioso , Proproteína Convertasa 9 , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , LDL-Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo , Encéfalo/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902035

RESUMEN

SARS-CoV-2 infection goes beyond acute pneumonia, as it also impacts lipid metabolism. Decreased HDL-C and LDL-C levels have been reported in patients with COVID-19. The lipid profile is a less robust biochemical marker than apolipoproteins, components of lipoproteins. However, the association of apolipoprotein levels during COVID-19 is not well described and understood. The objective of our study is to measure plasma levels of 14 apolipoproteins in patients with COVID-19 and to evaluate the relationships between apolipoprotein levels, severity factors and patient outcomes. From November to March 2021, 44 patients were recruited on admission to the intensive care unit because of COVID-19. Fourteen apolipoproteins and LCAT were measured by LC-MS/MS in plasma of 44 COVID-19 patients on admission to the ICU and 44 healthy control subjects. Absolute apolipoprotein concentrations were compared between COVID-19 patients and controls. Plasma apolipoproteins (Apo) A (I, II, IV), C(I, II), D, H, J and M and LCAT were lower in COVID-19 patients, whereas Apo E was higher. COVID-19 severity factors such as PaO2/FiO2 ratio, SO-FA score and CRP were correlated with certain apolipoproteins. Lower Apo B100 and LCAT levels were observed in non-survivors of COVID-19 versus survivors. To conclude, in this study, lipid and apolipoprotein profiles are altered in COVID-19 patients. Low Apo B100 and LCAT levels may be predictive of non-survival in COVID-19 patients.


Asunto(s)
COVID-19 , Colesterol , Humanos , Estudios de Cohortes , Cromatografía Liquida , Colesterol/metabolismo , SARS-CoV-2/metabolismo , Espectrometría de Masas en Tándem , Apolipoproteínas , Apolipoproteínas A , Apolipoproteína B-100 , Unidades de Cuidados Intensivos , Apolipoproteína A-I , Apolipoproteínas B , Apolipoproteína A-II
4.
J Lipid Res ; 63(11): 100293, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209894

RESUMEN

Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibits the clearance of low-density lipoprotein (LDL) cholesterol (LDL-C) from plasma by directly binding with the LDL receptor (LDLR) and sending the receptor for lysosomal degradation. As the interaction promotes elevated plasma LDL-C levels, and therefore a predisposition to cardiovascular disease, PCSK9 has attracted intense interest as a therapeutic target. Despite this interest, an orally bioavailable small-molecule inhibitor of PCSK9 with extensive lipid-lowering activity is yet to enter the clinic. We report herein the discovery of NYX-PCSK9i, an orally bioavailable small-molecule inhibitor of PCSK9 with significant cholesterol-lowering activity in hyperlipidemic APOE∗3-Leiden.CETP mice. NYX-PCSK9i emerged from a medicinal chemistry campaign demonstrating potent disruption of the PCSK9-LDLR interaction in vitro and functional protection of the LDLR of human lymphocytes from PCSK9-directed degradation ex vivo. APOE∗3-Leiden.CETP mice orally treated with NYX-PCSK9i demonstrated a dose-dependent decrease in plasma total cholesterol of up to 57%, while its combination with atorvastatin additively suppressed plasma total cholesterol levels. Importantly, the majority of cholesterol lowering by NYX-PCSK9i was in non-HDL fractions. A concomitant increase in total plasma PCSK9 levels and significant increase in hepatic LDLR protein expression strongly indicated on-target function by NYX-PCSK9i. Determinations of hepatic lipid and fecal cholesterol content demonstrated depletion of liver cholesteryl esters and promotion of fecal cholesterol elimination with NYX-PCSK9i treatment. All measured in vivo biomarkers of health indicate that NYX-PCSK9i has a good safety profile. NYX-PCSK9i is a potential new therapy for hypercholesterolemia with the capacity to further enhance the lipid-lowering activities of statins.


Asunto(s)
Anticolesterolemiantes , Hiperlipidemias , Inhibidores de PCSK9 , Receptores de LDL , Animales , Humanos , Ratones , Apolipoproteínas E , Colesterol , LDL-Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo , Inhibidores de PCSK9/farmacología , Hiperlipidemias/tratamiento farmacológico , Anticolesterolemiantes/farmacología
5.
Atherosclerosis ; 349: 82-91, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35606080

RESUMEN

Lipoprotein (a) (Lp(a)) is a strange lipoprotein species causatively independently and significantly associated with cardiovascular diseases and calcified aortic valve stenosis. Elevated plasma Lp(a) levels increase the rate of cardiovascular events at any achieved low-density lipoprotein (LDL) level. The major structural difference between Lp(a) and LDL is that Lp(a) has a second large protein, apolipoprotein (a) (apo(a)), bound to the apolipoprotein B100 moiety of an LDL sized particle by a single disulfide bond. Over the past decades, several investigators have tried to elucidate the molecular, cellular and metabolic pathways governing the production of Lp(a), the contribution of Lp(a) to lipid transport in the plasma, and the catabolic fate of Lp(a). The metabolism of this enigmatic lipoprotein nevertheless still remains poorly understood. The objectives of the present manuscript are to comprehensively review the knowns and unknowns of the complexities of Lp(a) metabolism with a focus on apo(a) biosynthesis in hepatocytes, Lp(a) assembly, and Lp(a) plasma clearance and catabolism. We also discuss the controversy surrounding the exact role of the LDL receptor in mediating Lp(a) cellular uptake by reviewing seminal in vitro and in vivo data, the metabolism of Lp(a) in familial hypercholesterolemia, as well as the divergent effects of statins and proprotein convertase subtilisin kexin type 9 inhibitors in modulating Lp(a) plasma concentrations. We also provide new insights into the physiology and pathophysiology of Lp(a) metabolism from human kinetic studies in the context of contemporary molecular and cell biological investigations.


Asunto(s)
Hiperlipidemias , Hiperlipoproteinemia Tipo II , Apolipoproteínas A , Apoproteína(a) , Humanos , Cinética , Lipoproteína(a) , Proproteína Convertasa 9/metabolismo
6.
Curr Atheroscler Rep ; 24(6): 399-405, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35355214

RESUMEN

PURPOSE OF REVIEW: Lipoprotein (a) [Lp(a)] is a highly atherogenic lipoprotein species. A unique feature of Lp(a) is the strong genetic determination of its concentration. The LPA gene is responsible for up to 90% of the variance in Lp(a), but other genes also have an impact. RECENT FINDINGS: Genome-wide associations studies indicate that the APOE gene, encoding apolipoprotein E (apoE), is the second most important locus modulating Lp(a) concentrations. Population studies clearly show that carriers of the apoE2 variant (ε2) display reduced Lp(a) levels, the lowest concentrations being observed in ε2/ε2 homozygotes. This genotype can lead predisposed adults to develop dysbetalipoproteinemia, a lipid disorder characterized by sharp elevations in cholesterol and triglycerides. However, dysbetalipoproteinemia does not significantly modulate circulating Lp(a). Mechanistically, apoE appears to impair the production but not the catabolism of Lp(a). These observations underline the complexity of Lp(a) metabolism and provide key insights into the pathways governing Lp(a) synthesis and secretion.


Asunto(s)
Hiperlipoproteinemia Tipo III , Lipoproteína(a) , Adulto , Apolipoproteínas E/genética , Genotipo , Humanos , Hiperlipoproteinemia Tipo III/genética , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Isoformas de Proteínas/genética
7.
Circ Genom Precis Med ; 15(2): e003489, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35133173

RESUMEN

BACKGROUND: Lp(a) (lipoprotein [a]) is a highly atherogenic lipoprotein strongly associated with coronary artery disease (CAD). Lp(a) concentrations are chiefly determined genetically. Investigation of large pedigrees with extreme Lp(a) using modern whole-genome approaches may unravel the genetic determinants underpinning this pathological phenotype. METHODS: A large family characterized by high Lp(a) and increased CAD incidence was recruited by cascade screening. Plasma lipids, lipoproteins, and apolipoproteins concentrations, as well as the size of apo(a) isoforms, were determined enzymatically by high-resolution mass spectrometry and Western blot, respectively. Whole-exome sequencing was performed to search for rare defects in modifier genes. Genetic risk scores (GRS) for Lp(a) and CAD were calculated and their discriminative power was assessed. RESULTS: Seventeen individuals displayed extreme Lp(a) levels including 6 with CAD. Whole-exome sequencing showed no hint for genetic defects outside the LPA locus. The extreme Lp(a) phenotype segregated with the presence of a short apo(a) isoform containing 21 Kringle IV domains. This allele was characterized by the presence of three rare strongly Lp(a) increasing single nucleotide polymorphisms and a significantly increased load of oxidized phospholipids per Lp(a) particle. An Lp(a) GRS consisting of 48 single nucleotide polymorphisms that represent 2001 genome-wide significant LPA single nucleotide polymorphisms, efficiently captured the hyper-Lp(a) phenotype and discriminated affected and nonaffected individuals with great accuracy. The genome-wide GRS for CAD, encompassing 6.6 million single nucleotide polymorphisms, was very high for most family members (>97.5 percentile of the reference population), but this observation was no longer valid when the contribution of the LPA locus was omitted. CONCLUSIONS: High-Lp(a) phenotypes can be successfully captured using the Lp(a) GRS even among closely related family members. In hyper-Lp(a) individuals, LPA can be a major locus driving a very high CAD GRS. This underpins the large contribution of the LPA locus to the cardiovascular genetic risk in families.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Enfermedades Cardiovasculares/genética , Enfermedad de la Arteria Coronaria/genética , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Lipoproteína(a)/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo
8.
Cardiovasc Diabetol ; 21(1): 21, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130909

RESUMEN

BACKGROUND: The identification of circulating biomarkers associated with the risk of type 2 diabetes (T2D) is useful for improving the current prevention strategies in the most at-risk patients. Here, we aimed to investigate the association of plasma apolipoprotein concentrations in prediabetes subjects with the incidence of new-onset T2D during follow-up. METHODS: In the IT-DIAB prospective study, 307 participants with impaired fasting glucose levels (fasting plasma glucose [FPG]: 110-125 mg/dL) were followed yearly for 5 years. The onset of T2D was defined as a first FPG value ≥ 126 mg/dL during follow-up. Apolipoprotein (apo)A-I, A-II, A-IV, B100, C-I, C-II, C-III, C-IV, D, E, F, H, J, L1, M, and (a) plasma concentrations were determined by mass spectrometry. Correlations between apolipoproteins and metabolic parameters at baseline were assessed by Spearman's coefficients. Kaplan-Meier curves were drawn using a ternary approach based on terciles and incident T2D. The association between plasma apolipoproteins concentrations and the incidence of T2D was determined using Cox proportional-hazards models. RESULTS: During a median follow-up of 5-year, 115 participants (37.5%) developed T2D. After adjustment for age, sex, body mass index, FPG, HbA1c, and statin use, the plasma levels of apoC-I, apoC-II, apoC-III, apoE, apoF, apoH, apoJ, and apoL1 were positively associated with a high risk for T2D. After further adjustment for plasma triglycerides, only apoE (1 SD natural-log-transformed hazard ratio: 1.28 [95% confidence interval: 1.06; 1.54]; p = 0.010), apoF (1.22 [1.01; 1.48]; p = 0.037), apoJ (1.24 [1.03; 1.49]; p = 0.024), and apoL1 (1.26 [1.05; 1.52]; p = 0.014) remained significantly associated with the onset of T2D. Kaplan-Meier survival curves also showed that the lower third of plasma apoE levels (< 5.97 mg/dL) was significantly associated with a lower risk of conversion to T2D (log-rank test, p = 0.002) compared to the middle and upper thirds. CONCLUSIONS: The plasma apoE levels are positively associated with the risk of T2D in prediabetes subjects, independently of traditional risk factors. The possible associations of apoF, apoJ, and apoL1 with T2D risk also pave the way for further investigations. Trial registration This trial was registered at clinicaltrials.gov as NCT01218061 and NCT01432509.


Asunto(s)
Apolipoproteínas/sangre , Diabetes Mellitus Tipo 2/sangre , Estado Prediabético/sangre , Anciano , Apolipoproteína L1/sangre , Biomarcadores/sangre , Clusterina/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Progresión de la Enfermedad , Femenino , Francia/epidemiología , Humanos , Incidencia , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Estado Prediabético/diagnóstico , Estado Prediabético/epidemiología , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
9.
Cardiovasc Res ; 118(9): 2103-2111, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34314498

RESUMEN

AIMS: Lipoprotein (a) [Lp(a)] is a lipoprotein species causatively associated with atherosclerosis. Unlike statins, PCSK9 inhibitors (PCSK9i) reduce Lp(a), but this reduction is highly variable. Levels of Lp(a) are chiefly governed by the size of its signature protein, apolipoprotein (a) [apo(a)]. Whether this parameter determines some of the reduction in Lp(a) induced by PCSK9i remains unknown. We aimed to investigate if the Lp(a) lowering efficacy of PCSK9i is modulated by the size of apo(a), which is genetically determined by the variable number of KIV domains present on that protein. METHODS AND RESULTS: The levels of Lp(a) and the size of apo(a) were assessed in plasma samples from 268 patients before and after treatment with PCSK9i. Patients were recruited at the Outpatient Lipid Clinic of the Charité Hospital (Berlin) between 2015 and 2020. They were hypercholesterolaemic at very high cardiovascular disease risk with low-density lipoprotein (LDL)-cholesterol levels above therapeutic targets despite maximally tolerated lipid-lowering therapy. Patients received either Alirocumab (75 or 150 mg) or Evolocumab (140 mg) every 2 weeks. Apo(a), apoB100, and apoE concentrations as well as apoE major isoforms were determined by liquid chromatography high-resolution mass spectrometry. Apo(a) isoforms sizes were determined by western blot. PCSK9i sharply reduced LDL-cholesterol (-57%), apoB100 (-47%), and Lp(a) (-36%). There was a positive correlation between the size of apo(a) and the relative reduction in Lp(a) induced by PCSK9i (r = 0.363, P = 0.0001). The strength of this association remained unaltered after adjustment for baseline Lp(a) levels and all other potential confounding factors. In patients with two detectable apo(a) isoforms, there was also a positive correlation between the size of apo(a) and the reduction in Lp(a), separately for the smaller (r = 0.350, P = 0.0001) and larger (r = 0.324, P = 0.0003) isoforms. The relative contribution of the larger isoform to the total concentration of apo(a) was reduced from 29% to 15% (P < 0.0001). CONCLUSIONS: The size of apo(a) is an independent determinant of the response to PCSK9i. Each additional kringle domain is associated with a 3% additional reduction in Lp(a). This explains in part the variable efficacy of PCSK9i and allows to identify patients who will benefit most from these therapies in terms of Lp(a) lowering.


Asunto(s)
Lipoproteína(a) , Inhibidores de PCSK9 , Apolipoproteínas E , Apoproteína(a)/química , Colesterol , Humanos , Lipoproteína(a)/metabolismo , Proproteína Convertasa 9 , Isoformas de Proteínas
10.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34948399

RESUMEN

BACKGROUND: Gain of function (GOF) mutations of PCSK9 cause autosomal dominant familial hypercholesterolemia as they reduce the abundance of LDL receptor (LDLR) more efficiently than wild-type PCSK9. In contrast, PCSK9 loss of function (LOF) variants are associated with a hypocholesterolemic phenotype. Dozens of PCSK9 variants have been reported, but most remain of unknown significance since their characterization has not been conducted. OBJECTIVE: Our aim was to make the most comprehensive assessment of PCSK9 variants and to determine the simplest approach for the classification of these variants. METHODS: The expression, maturation, secretion, and activity of nine well-established PCSK9 variants were assessed in transiently transfected HEK293 cells by Western blot and flow cytometry. Their extracellular activities were determined in HepG2 cells incubated with the purified recombinant PCSK9 variants. Their binding affinities toward the LDLR were determined by solid-phase immunoassay. RESULTS: LDLR expression increased when cells were transfected with LOF variants and reduced when cells were transfected with GOF variants compared with wild-type PCSK9. Extracellular activities measurements yielded exactly similar results. GOF and LOF variants had increased, respectively reduced, affinities for the LDLR compared with wild-type PCSK9 with the exception of one GOF variant (R218S) that showed complete resistance to inactivation by furin. All variants were expressed at similar levels and underwent normal maturation and secretion patterns except for two LOF and two GOF mutants. CONCLUSIONS: We propose that transient transfections of HEK293 cells with a plasmid encoding a PCSK9 variant followed by LDLR expression assessment by flow cytometry is sufficient to reliably determine its GOF or LOF status. More refined experiments should only be used to determine the underlying mechanism(s) at hand.


Asunto(s)
Proproteína Convertasa 9/genética , Mutación con Ganancia de Función , Células HEK293 , Células Hep G2 , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo
11.
Eur Heart J ; 42(32): 3091-3093, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34324660
12.
J Lipid Res ; 62: 100062, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675717

RESUMEN

Familial hypercholesterolemia (FH) is one of the most common genetic disorders in humans. It is an extremely atherogenic metabolic disorder characterized by lifelong elevations of circulating LDL-C levels often leading to premature cardiovascular events. In this review, we discuss the clinical phenotypes of heterozygous and homozygous FH, the genetic variants in four genes (LDLR/APOB/PCSK9/LDLRAP1) underpinning the FH phenotype as well as the most recent in vitro experimental approaches used to investigate molecular defects affecting the LDL receptor pathway. In addition, we review perturbations in the metabolism of lipoproteins other than LDL in FH, with a major focus on lipoprotein (a). Finally, we discuss the mode of action and efficacy of many of the currently approved hypocholesterolemic agents used to treat patients with FH, with a special emphasis on the treatment of phenotypically more severe forms of FH.


Asunto(s)
Proproteína Convertasa 9
13.
Arterioscler Thromb Vasc Biol ; 41(2): 934-943, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147992

RESUMEN

OBJECTIVE: Familial hypercholesterolemia (FH) is characterized by elevated low-density lipoprotein-cholesterol and markedly increased cardiovascular risk. In patients with a genetic diagnosis, low-density lipoprotein receptor (LDLR) mutations account for >90% of cases, apolipoprotein B (APOB) mutations for ≈5% of cases, while proprotein convertase subtilisin kexin type 9 (PCSK9) gain of function mutations are rare (<1% of cases). We aimed to evaluate the functional impact of several novel PCSK9 variants in a cohort of patients with FH by genetic cascade screening and in vitro functionality assays. Approach and Results: Patients with clinically diagnosed FH underwent genetic analysis of LDLR, and if negative, sequential testing of APOB and PCSK9. We analyzed cosegregation of hypercholesterolemia with novel PCSK9 variants. Gain of function status was determined by in silico analyses and validated by in vitro functionality assays. Among 1055 persons with clinical FH, we identified nonsynonymous PCSK9 variants in 27 (2.6%) patients and 7 of these carried one of the 4 previously reported gain of function variants. In the remaining 20 patients with FH, we identified 7 novel PCSK9 variants. The G516V variant (c.1547G>T) was found in 5 index patients and cascade screening identified 15 additional carriers. Low-density lipoprotein-cholesterol levels were higher in these 15 carriers compared with the 27 noncarriers (236±73 versus 124±35 mg/dL; P<0.001). In vitro studies demonstrated the pathogenicity of the G516V variant. CONCLUSIONS: In our study, 1.14% of cases with clinical FH were clearly attributable to pathogenic variants in PCSK9. Pathogenicity is established beyond doubt for the G516V variant.


Asunto(s)
Hiperlipoproteinemia Tipo II/genética , Mutación , Proproteína Convertasa 9/genética , Adulto , Anciano , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Factores de Riesgo de Enfermedad Cardiaca , Células Hep G2 , Herencia , Humanos , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/diagnóstico , Lípidos/sangre , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Supervivencia sin Progresión , Proproteína Convertasa 9/metabolismo , Medición de Riesgo , Sudáfrica , Factores de Tiempo , Adulto Joven
14.
JACC Basic Transl Sci ; 5(6): 549-557, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32613143

RESUMEN

Lipoprotein(a) (Lp[a]) is the most common genetically inherited risk factor for cardiovascular disease. Many aspects of Lp(a) metabolism remain unknown. We assessed the uptake of fluorescent Lp(a) in primary human lymphocytes as well as Lp(a) hepatic capture in a mouse model in which endogenous hepatocytes have been ablated and replaced with human ones. Modulation of LDLR expression with the PCSK9 inhibitor alirocumab did not alter the cellular or the hepatic uptake of Lp(a), demonstrating that the LDL receptor is not a major route for Lp(a) plasma clearance. These results have clinical implications because they underpin why statins are not efficient at reducing Lp(a).

15.
J Lipid Res ; 61(7): 1128-1139, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32404332

RESUMEN

Apolipoproteins govern lipoprotein metabolism and are promising biomarkers of metabolic and cardiovascular diseases. Unlike immunoassays, MS enables the quantification and phenotyping of multiple apolipoproteins. Hence, here, we aimed to develop a LC-MS/MS assay that can simultaneously quantitate 18 human apolipoproteins [A-I, A-II, A-IV, A-V, B48, B100, C-I, C-II, C-III, C-IV, D, E, F, H, J, L1, M, and (a)] and determined apoE, apoL1, and apo(a) phenotypes in human plasma and serum samples. The plasma and serum apolipoproteins were trypsin digested through an optimized procedure and peptides were extracted and analyzed by LC-MS/MS. The method was validated according to standard guidelines in samples spiked with known peptide amounts. The LC-MS/MS results were compared with those obtained with other techniques, and reproducibility, dilution effects, and stabilities were also assessed. Peptide markers were successfully selected for targeted apolipoprotein quantification and phenotyping. After optimization, the assay was validated for linearity, lower limits of quantification, accuracy (biases: -14.8% to 12.1%), intra-assay variability [coefficients of variation (CVs): 1.5-14.2%], and inter-assay repeatability (CVs: 4.1-14.3%). Bland-Altman plots indicated no major statistically significant differences between LC-MS/MS and other techniques. The LC-MS/MS results were reproducible over five repeated experiments (CVs: 1.8-13.7%), and we identified marked differences among the plasma and serum samples. The LC-MS/MS assay developed here is rapid, requires only small sampling volumes, and incurs reasonable costs, thus making it amenable for a wide range of studies of apolipoprotein metabolism. We also highlight how this assay can be implemented in laboratories.


Asunto(s)
Apolipoproteínas/sangre , Análisis Químico de la Sangre/métodos , Espectrometría de Masas , Cromatografía Liquida , Humanos , Límite de Detección
16.
Bioorg Med Chem ; 28(6): 115344, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32051094

RESUMEN

Proprotein convertase (PC) subtilisin kexin type 9 (PCSK9) inhibits the clearance of low density lipoprotein (LDL) cholesterol from plasma by directly interacting with the LDL receptor (LDLR). As the interaction promotes elevated plasma LDL cholesterol levels and a predisposition to cardiovascular disease (CVD), it has attracted much interest as a therapeutic target. While anti-PCSK9 monoclonal antibodies have been successful in the treatment of hypercholesteremia by decreasing CVD risk, their high cost and a requirement for injection have prohibited widespread use. The advent of an orally bioavailable small molecule inhibitor of the PCSK9-LDLR interaction is an attractive alternative, however efforts have been tempered as the binding interface is unfavourable for binding by small organic molecules. Despite its challenging nature, we report herein the discovery of compound 3f as a small molecule inhibitor of PCSK9. The kinase inhibitor nilotinib emerged from a computational screen that was applied to identify compounds that may bind to a cryptic groove within PCSK9 and proximal to the LDLR-binding interface. A subsequent in vitro PCSK9-LDLR binding assay established that nilotinib was a bona fide but modest inhibitor of the interaction (IC50 = 9.8 µM). Through multiple rounds of medicinal chemistry, 3f emerged as a lead-like molecule by demonstrating disruption of the PCSK9-LDLR interaction at nanomolar levels in vitro (IC50 = 537 nM) with no inhibitory activity (IC50 > 10 µM) against a small panel of kinases. Compound 3f restored LDL uptake by liver cells at sub-micromolar levels and demonstrated excellent bioavailability when delivered subcutaneously in mice. Most significantly, compound 3f lowered total cholesterol levels in the plasma of wild-type mice, thereby providing proof-of-concept that the notion of a small molecule inhibitor against PCSK9 is therapeutically viable.


Asunto(s)
Inhibidores de PCSK9 , Receptores de LDL/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Femenino , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Proproteína Convertasa 9/deficiencia , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
19.
Pathology ; 51(2): 177-183, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30522786

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a crucial protein governing the circulating levels of low density lipoprotein-cholesterol (LDL-C), by virtue of its pivotal role in the degradation of the LDL receptor (LDLR). In the last 15 years, in vitro and in vivo studies have allowed our understanding of the physiological role of PCSK9. In the current report, we review the key studies that have established the mode of action of PCSK9, leading to the development of PCSK9 inhibitors for clinical use. Data from clinical trials investigating these therapies clearly and unambiguously demonstrate the safety and efficacy of these new drugs that have the power to dramatically reduce LDL-C and associated cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , LDL-Colesterol/efectos de los fármacos , LDL-Colesterol/metabolismo , Inhibidores de PCSK9 , Inhibidores de Proteasas/uso terapéutico , Receptores de LDL/metabolismo , Enfermedades Cardiovasculares/metabolismo , Humanos , Proproteína Convertasa 9/metabolismo
20.
Clin Sci (Lond) ; 132(10): 1075-1083, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29724769

RESUMEN

Therapeutic antibodies targeting proprotein convertase subtilisin kexin type 9 (PCSK9) (e.g. alirocumab) lower low-density lipoprotein cholesterol (LDL-C) and lipoprotein (a) [Lp(a)] levels in clinical trials. We recently showed that PCSK9 enhances apolipoprotein(a) [apo(a)] secretion from primary human hepatocytes but does not affect Lp(a) cellular uptake. Here, we aimed to determine how PCSK9 neutralization modulates Lp(a) levels in vivoSix nonhuman primates (NHP) were treated with alirocumab or a control antibody (IgG1) in a crossover protocol. After the lowering of lipids reached steady state, NHP received an intravenous injection of [2H3]-leucine, and blood samples were collected sequentially over 48 h. Enrichment of apolipoproteins in [2H3]-leucine was assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Kinetic parameters were calculated using numerical models with the SAAMII software. Compared with IgG1, alirocumab significantly reduced total cholesterol (TC) (-28%), LDL-C (-67%), Lp(a) (-56%), apolipoprotein B100 (apoB100) (-53%), and apo(a) (-53%). Alirocumab significantly increased the fractional catabolic rate of apoB100 (+29%) but not that of apo(a). Conversely, alirocumab sharply and significantly reduced the production rate (PR) of apo(a) (-42%), but not significantly that of apoB100, compared with IgG1, respectively.In line with the observations made in human hepatocytes, the present kinetic study establishes that PCSK9 neutralization with alirocumab efficiently reduces circulating apoB100 and apo(a) levels by distinct mechanisms: apoB primarily by enhancing its catabolism and apo(a) primarily by lowering its production.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticolesterolemiantes/farmacología , Lipoproteína(a)/sangre , Inhibidores de PCSK9 , Animales , Anticuerpos Monoclonales Humanizados , Apoproteína(a)/biosíntesis , Colesterol/sangre , Estudios Cruzados , Femenino , Lípidos/sangre , Macaca fascicularis , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...