Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Res Sq ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36824869

RESUMEN

Bacteria dysbiosis has been associated with an increased risk of HIV-1 transmission and acquisition. The prevalent idea is that bacteria dysbiosis compromises mucosal integrity and promotes inflammatory conditions to cause recruitment and activation of immune cells that harbor or are targeted by HIV-1. However, it is also possible that HIV-1 directly binds bacteria or bacterial products to impact virus infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, which is part of the fimbriae shrouding the bacteria surface and recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. Conversely, N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to broadly neutralizing antibodies targeting different regions of Env. Hence, this study highlights the potential contribution of O-glycans in promoting HIV-1 infection through the exploitation of O-glycan-binding lectins from commensal bacteria at the mucosa.

2.
J Virol ; 97(12): e0159523, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032195

RESUMEN

IMPORTANCE: Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.


Asunto(s)
Infecciones por VIH , VIH-1 , Células Madre Pluripotentes Inducidas , Microglía , Animales , Humanos , Ratones , Sistema Nervioso Central , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , VIH-1/fisiología , Microglía/virología , Latencia del Virus , Xenoinjertos
3.
Artículo en Inglés | MEDLINE | ID: mdl-37450338

RESUMEN

More than 40 years after the first reported cases of what then became known as acquired immunodeficiency syndrome (AIDS), tremendous progress has been achieved in transforming the disease from almost universally fatal to a chronic manageable condition. Nonetheless, the efforts to find a preventative vaccine or a cure for the underlying infection with Human Immunodeficiency Virus (HIV) remain largely unsuccessful. Many challenges intrinsic to the virus characteristics and host response need to be overcome for either goal to be achieved. This article will review the obstacles to an effective HIV cure, specifically the steps involved in the generation of HIV latency, focusing on the role of the gut-associated lymphoid tissue, which has received less attention compared with the peripheral blood, despite being the largest repository of lymphoid tissue in the human body, and a large site for HIV persistence.

4.
PLoS One ; 18(6): e0286297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37352211

RESUMEN

IMPORTANCE: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis. METHODS: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms. DISCUSSION: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options. REGISTRATION: NCT05172024.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Estudios Observacionales como Asunto , Síndrome Post Agudo de COVID-19 , Estudios Prospectivos , Estudios Retrospectivos , SARS-CoV-2 , Adolescente , Adulto , Estudios Multicéntricos como Asunto
5.
bioRxiv ; 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37162838

RESUMEN

The central nervous system (CNS) is a major human immunodeficiency virus type 1 reservoir. Microglia are the primary target cell of HIV-1 infection in the CNS. Current models have not allowed the precise molecular pathways of acute and chronic CNS microglial infection to be tested with in vivo genetic methods. Here, we describe a novel humanized mouse model utilizing human-induced pluripotent stem cell-derived microglia to xenograft into murine hosts. These mice are additionally engrafted with human peripheral blood mononuclear cells that served as a medium to establish a peripheral infection that then spread to the CNS microglia xenograft, modeling a trans-blood-brain barrier route of acute CNS HIV-1 infection with human target cells. The approach is compatible with iPSC genetic engineering, including inserting targeted transgenic reporter cassettes to track the xenografted human cells, enabling the testing of novel treatment and viral tracking strategies in a comparatively simple and cost-effective way vivo model for neuroHIV.

6.
Mol Cell ; 82(24): 4647-4663.e8, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525955

RESUMEN

To explore genome organization and function in the HIV-infected brain, we applied single-nuclei transcriptomics, cell-type-specific chromosomal conformation mapping, and viral integration site sequencing (IS-seq) to frontal cortex from individuals with encephalitis (HIVE) and without (HIV+). Derepressive changes in 3D genomic compartment structures in HIVE microglia were linked to the transcriptional activation of interferon (IFN) signaling and cell migratory pathways, while transcriptional downregulation and repressive compartmentalization of neuronal health and signaling genes occurred in both HIVE and HIV+ microglia. IS-seq recovered 1,221 brain integration sites showing distinct genomic patterns compared with peripheral lymphocytes, with enrichment for sequences newly mobilized into a permissive chromatin environment after infection. Viral transcription occurred in a subset of highly activated microglia comprising 0.33% of all nuclei in HIVE brain. Our findings point to disrupted microglia-neuronal interactions in HIV and link retroviral integration to remodeling of the microglial 3D genome during infection.


Asunto(s)
Infecciones por VIH , Microglía , Humanos , Microglía/metabolismo , Encéfalo , Activación de Macrófagos , Macrófagos , Infecciones por VIH/genética
7.
iScience ; 25(11): 105468, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36388970

RESUMEN

The availability of cost-effective, highly portable, and easy to use high-resolution live-cell imaging systems could present a significant technological break-through in challenging environments, such as high-level biosafety laboratories or sites where new viral outbreaks are suspected. We describe and demonstrate a cost-effective high-speed fluorescence microscope enabling the live tracking of virus particles across virological synapses that form between infected and uninfected T cells. The dynamics of HIV-1 proteins studied at the cellular level and the formation of virological synapses in living T cells reveals mechanisms by which cell-cell interactions facilitate infection between immune cells. Dual-color 3D fluorescence deconvolution microscopy of HIV-1 particles at frames rates of 100 frames per second allows us to follow the transfer of HIV-1 particles across the T cell virological synapse between living T cells. We also confirm the successful transfer of virus by imaging T cell samples fixed at specific time points during cell-cell virus transfer by super-resolution structured illumination microscopy.

8.
mBio ; 13(2): e0182521, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35323042

RESUMEN

The HIV Env glycoprotein is the surface glycoprotein responsible for viral entry into CD4+ immune cells. During infection, Env also serves as a primary target for antibody responses, which are robust but unable to control virus replication. Immune evasion by HIV-1 Env appears to employ complex mechanisms to regulate what antigenic states are presented to the immune system. Immunodominant features appear to be distinct from epitopes that interfere with Env functions in mediating infection. Further, cell-cell transmission studies indicate that vulnerable conformational states are additionally hidden from recognition on infected cells, even though the presence of Env at the cell surface is required for viral infection through the virological synapse. Cell-cell infection studies support that Env on infected cells is presented in distinct conformations from that on virus particles. Here we review data regarding the regulation of conformational states of Env and assess how regulated sorting of Env within the infected cell may underlie mechanisms to distinguish Env on the surface of virus particles versus Env on the surface of infected cells. These mechanisms may allow infected cells to avoid opsonization, providing cell-to-cell infection by HIV with a selective advantage during evolution within an infected individual. Understanding how distinct Env conformations are presented on cells versus viruses may be essential to designing effective vaccine approaches and therapeutic strategies to clear infected cell reservoirs.


Asunto(s)
Infecciones por VIH , VIH-1 , Antígenos CD4/metabolismo , Anticuerpos Anti-VIH , VIH-1/fisiología , Humanos , Conformación Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana
9.
PLoS Pathog ; 18(1): e1010183, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986207

RESUMEN

Antibodies are principal immune components elicited by vaccines to induce protection from microbial pathogens. In the Thai RV144 HIV-1 vaccine trial, vaccine efficacy was 31% and the sole primary correlate of reduced risk was shown to be vigorous antibody response targeting the V1V2 region of HIV-1 envelope. Antibodies against V3 also were inversely correlated with infection risk in subsets of vaccinees. Antibodies recognizing these regions, however, do not exhibit potent neutralizing activity. Therefore, we examined the antiviral potential of poorly neutralizing monoclonal antibodies (mAbs) against immunodominant V1V2 and V3 sites by passive administration of human mAbs to humanized mice engrafted with CD34+ hematopoietic stem cells, followed by mucosal challenge with an HIV-1 infectious molecular clone expressing the envelope of a tier 2 resistant HIV-1 strain. Treatment with anti-V1V2 mAb 2158 or anti-V3 mAb 2219 did not prevent infection, but V3 mAb 2219 displayed a superior potency compared to V1V2 mAb 2158 in reducing virus burden. While these mAbs had no or weak neutralizing activity and elicited undetectable levels of antibody-dependent cellular cytotoxicity (ADCC), V3 mAb 2219 displayed a greater capacity to bind virus- and cell-associated HIV-1 envelope and to mediate antibody-dependent cellular phagocytosis (ADCP) and C1q complement binding as compared to V1V2 mAb 2158. Mutations in the Fc region of 2219 diminished these effector activities in vitro and lessened virus control in humanized mice. These results demonstrate the importance of Fc functions other than ADCC for antibodies without potent neutralizing activity.


Asunto(s)
Productos del Gen env/inmunología , Anticuerpos Anti-VIH/farmacología , Infecciones por VIH , Carga Viral/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Inmunización Pasiva , Regiones Constantes de Inmunoglobulina , Ratones , Membrana Mucosa
10.
Viruses ; 13(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34578310

RESUMEN

During HIV-1 transmission through T cell virological synapses, the recruitment of the envelope (Env) glycoprotein to the site of cell-cell contact is important for adhesion and for packaging onto nascent virus particles which assemble at the site. Live imaging studies in CD4 T cells have captured the rapid recruitment of the viral structural protein Gag to VSs. We explored the role of endocytic trafficking of Env initiated by a membrane proximal tyrosine motif during HIV transfer into target cells and examined the factors that allow Gag and Env to be transferred together across the synapse. To facilitate tracking of Env in live cells, we adapted an Env tagging method and introduced a biotin acceptor peptide (BAP) into the V4 loop of Env gp120, enabling sensitive fluorescent tracking of V4-biotinylated Env. The BAP-tagged and biotinylated HIVs were replication-competent in cell-free and cell-to-cell infection assays. Live cell fluorescent imaging experiments showed rapid internalized cell surface Env on infected cells. Cell-cell transfer experiments conducted with the Env endocytosis mutant (Y712A) showed increased transfer of Env. Paradoxically, this increase in Env transfer was associated with significantly reduced Gag transfer into target cells, when compared to viral transfer associated with WT Env. This Y712A Env mutant also exhibited an altered Gag/biotin Env fluorescence ratio during transfer that correlated with decreased productive cell-to-cell infection. These results may suggest that the internalization of Env into recycling pools plays an important role in the coordinated transfer of Gag and Env across the VS, which optimizes productive infection in target cells.


Asunto(s)
Biotina/metabolismo , Infecciones por VIH/transmisión , VIH-1/metabolismo , Biotina/análogos & derivados , Linfocitos T CD4-Positivos/virología , Membrana Celular , Infecciones por VIH/virología , Humanos , Virión/metabolismo , Ensamble de Virus , Internalización del Virus , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
11.
Viruses ; 14(1)2021 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-35062242

RESUMEN

HIV-1 infection is enhanced by cell-cell adhesions between infected and uninfected T cells called virological synapses (VS). VS are initiated by the interactions of cell-surface HIV-1 envelope glycoprotein (Env) and CD4 on target cells and act as sites of viral assembly and viral transfer between cells. To study the process that recruits and retains HIV-1 Env at the VS, a replication-competent HIV-1 clone carrying an Env-sfGFP fusion protein was designed to enable live tracking of Env within infected cells. Combined use of surface pulse-labeling of Env and fluorescence recovery after photobleaching (FRAP) studies, enabled the visualization of the targeted accumulation and sustained recycling of Env between endocytic compartments (EC) and the VS. We observed dynamic exchange of Env at the VS, while the viral structural protein, Gag, was largely immobile at the VS. The disparate exchange rates of Gag and Env at the synapse support that the trafficking and/or retention of a majority of Env towards the VS is not maintained by entrapment by a Gag lattice or immobilization by binding to CD4 on the target cell. A FRAP study of an Env endocytosis mutant showed that recycling is not required for accumulation at the VS, but is required for the rapid exchange of Env at the VS. We conclude that the mechanism of Env accumulation at the VS and incorporation into nascent particles involves continuous internalization and targeted secretion rather than irreversible interactions with the budding virus, but that this recycling is largely dispensable for VS formation and viral transfer across the VS.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Células Clonales/metabolismo , Infecciones por VIH/virología , VIH-1/metabolismo , Adhesión Celular , Endocitosis , Productos del Gen env/metabolismo , Células HEK293 , VIH-1/genética , Humanos , Células Jurkat , Sinapsis/metabolismo , Ensamble de Virus , Internalización del Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
12.
Nat Med ; 26(11): 1708-1713, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32934372

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a new human disease with few effective treatments1. Convalescent plasma, donated by persons who have recovered from COVID-19, is the acellular component of blood that contains antibodies, including those that specifically recognize SARS-CoV-2. These antibodies, when transfused into patients infected with SARS-CoV-2, are thought to exert an antiviral effect, suppressing virus replication before patients have mounted their own humoral immune responses2,3. Virus-specific antibodies from recovered persons are often the first available therapy for an emerging infectious disease, a stopgap treatment while new antivirals and vaccines are being developed1,2. This retrospective, propensity score-matched case-control study assessed the effectiveness of convalescent plasma therapy in 39 patients with severe or life-threatening COVID-19 at The Mount Sinai Hospital in New York City. Oxygen requirements on day 14 after transfusion worsened in 17.9% of plasma recipients versus 28.2% of propensity score-matched controls who were hospitalized with COVID-19 (adjusted odds ratio (OR), 0.86; 95% confidence interval (CI), 0.75-0.98; chi-square test P value = 0.025). Survival also improved in plasma recipients (adjusted hazard ratio (HR), 0.34; 95% CI, 0.13-0.89; chi-square test P = 0.027). Convalescent plasma is potentially effective against COVID-19, but adequately powered, randomized controlled trials are needed.


Asunto(s)
COVID-19/patología , COVID-19/terapia , Adulto , Anciano , Anticuerpos Antivirales/sangre , COVID-19/epidemiología , Estudios de Casos y Controles , Femenino , Humanos , Inmunización Pasiva , Masculino , Persona de Mediana Edad , Pandemias , Puntaje de Propensión , Estudios Retrospectivos , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Sueroterapia para COVID-19
13.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31852781

RESUMEN

Purinergic receptors are well-established modulators of inflammatory processes, primarily through detection of extracellular nucleotides that are released by dying or infected cells. Emerging literature has demonstrated that inhibition of these inflammatory receptors can block HIV-1 productive infection and HIV-1-associated inflammation. The specificity of receptor type and mechanism of interaction has not yet been determined. Here, we characterize the inhibitory activity of P2X1 receptor antagonists, NF279 and NF449, in cell lines, primary cells, and a variety of HIV-1 envelope (Env) clades. NF279 and NF449 blocked productive infection at the level of viral membrane fusion, with a range of inhibitory activities against different HIV-1 Env isolates. A mutant virus carrying a truncation deletion of the C-terminal tail of HIV-1 Env glycoprotein 41 (gp41) showed reduced sensitivity to P2X1 antagonists, indicating that the sensitivity of inhibition by these molecules may be modulated by Env conformation. In contrast, a P2X7 antagonist, A438079, had a limited effect on productive infection and fusion. NF279 and NF449 interfered with the ability of the gp120 variable regions 1 and 2 (V1V2)-targeted broadly neutralizing antibody PG9 to block productive infection, suggesting that these drugs may antagonize HIV-1 Env at gp120 V1V2 to block viral membrane fusion. Our observations indicate that P2X1 antagonism can inhibit HIV-1 replication at the level of viral membrane fusion through interaction with Env. Future studies will probe the nature of these compounds in inhibiting HIV-1 fusion and the development of small molecules to block HIV-1 entry via this mechanism.IMPORTANCE While effective treatment can lower the severe morbidity and mortality associated with HIV-1 infection, patients infected with HIV-1 suffer from significantly higher rates of noncommunicable comorbidities associated with chronic inflammation. Emerging literature suggests a key role for P2X1 receptors in mediating this chronic inflammation, but the mechanism is still unknown. Here, we demonstrate that HIV-1 infection is reduced by P2X1 receptor antagonism. This inhibition is mediated by interference with HIV-1 Env and can impact a variety of viral clades. These observations highlight the importance of P2X1 antagonists as potential novel therapeutics that could serve to block a variety of different viral clades with additional benefits for their anti-inflammatory properties.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Mutación , Antagonistas del Receptor Purinérgico P2X/farmacología , Internalización del Virus/efectos de los fármacos , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Infecciones por VIH/patología , VIH-1/genética , Humanos
14.
Retrovirology ; 16(1): 2, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30646921

RESUMEN

BACKGROUND: HIV infection is enhanced by cell adhesions that form between infected and uninfected T cells called virological synapses (VS). VS are initiated by an interaction between Env and CD4 on cell surfaces and result in the recruitment of virus assembly to the site of cell-cell contact. However, the recruitment of Env to the VS and its relationship to Gag recruitment is not well defined. RESULTS: To study the trafficking of HIV-1 Env through the VS, we constructed a molecular clone of HIV carrying a green fluorescent protein-Env fusion protein called, HIV Env-isfGFP-∆V1V2. The Env-isfGFP-∆V1V2 fusion protein does not produce virus particles on its own, but can be rescued by cotransfection with full-length HIV constructs and produce virus particles that package the fluorescent Env. These rescued fluorescent Env can participate in VS formation and can be used to directly image CD4-dependent Env transfer across VS from donor to target cells. The movements of fluorescently tagged Gag and Env to the VS and transfer into target cells can be also tracked through live imaging. Time lapse live imaging reveals evidence of limited Env accumulation at the site of cell-cell contact shortly after cell adhesion, followed by Gag re-distribution to contact area. Both Gag and Env can be recruited to form button-like spots characteristic of VS. CONCLUSIONS: Env and Gag are recruited to the VS in a coordinated temporal sequence and subsequently transfer together across the synapse into the target cell. Env accumulations, when observed, are earlier than Gag re-distribution to the contact area during formation of VS.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Adhesión Celular , VIH-1/fisiología , Microscopía Intravital , Ensamble de Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/fisiología , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Humanos , Células Jurkat , Transporte de Proteínas , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética , Coloración y Etiquetado , Imagen de Lapso de Tiempo
15.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305360

RESUMEN

HIV-1 causes a persistent infection of the immune system that is associated with chronic comorbidities. The mechanisms that underlie this inflammation are poorly understood. Emerging literature has implicated proinflammatory purinergic receptors and downstream signaling mediators in HIV-1 infection. This study probed whether inhibitors of purinergic receptors would reduce HIV-1 infection and HIV-1-stimulated inflammation. An ex vivo human tonsil histoculture infection model was developed to support HIV-1 productive infection and stimulated the inflammatory cytokine interleukin-1 beta (IL-1ß) and the immunosuppressive cytokine interleukin-10 (IL-10). This study tests whether inhibitors of purinergic receptors would reduce HIV-1 infection and HIV-1-stimulated inflammation. The purinergic P2X1 receptor antagonist NF449, the purinergic P2X7 receptor antagonist A438079, and azidothymidine (AZT) were tested in HIV-1-infected human tonsil explants to compare levels of inhibition of HIV-1 infection and HIV-stimulated inflammatory cytokine production. All drugs limited HIV-1 productive infection, but P2X-selective antagonists (NF449 and A438079) significantly lowered HIV-stimulated IL-10 and IL-1ß. We further observed that P2X1- and P2X7-selective antagonists can act differentially as inhibitors of both HIV-1 infection and HIV-1-stimulated inflammation. Our findings highlight the differential effects of HIV-1 on inflammation in peripheral blood compared to those in lymphoid tissue. For the first time, we demonstrate that P2X-selective antagonists act differentially as inhibitors of both HIV-1 infection and HIV-1-stimulated inflammation. Drugs that block these pathways can have independent inhibitory activities against HIV-1 infection and HIV-induced inflammation.IMPORTANCE Patients who are chronically infected with HIV-1 experience sequelae related to chronic inflammation. The mechanisms of this inflammation have not been elucidated. Here, we describe a class of drugs that target the P2X proinflammatory signaling receptors in a human tonsil explant model. This model highlights differences in HIV-1 stimulation of lymphoid tissue inflammation and peripheral blood. These drugs serve to block both HIV-1 infection and production of IL-10 and IL-1ß in lymphoid tissue, suggesting a novel approach to HIV-1 therapeutics in which both HIV-1 replication and inflammatory signaling are simultaneously targeted.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/patogenicidad , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Tonsila Palatina/citología , Antagonistas del Receptor Purinérgico P2X/farmacología , Bencenosulfonatos/farmacología , Regulación hacia Abajo , Regulación de la Expresión Génica , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , VIH-1/inmunología , Humanos , Modelos Biológicos , Tonsila Palatina/efectos de los fármacos , Tonsila Palatina/inmunología , Tonsila Palatina/virología , Piridinas/farmacología , Tetrazoles/farmacología , Técnicas de Cultivo de Tejidos , Virulencia/efectos de los fármacos , Zidovudina/farmacología
16.
Virology ; 526: 189-202, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30415130

RESUMEN

HIV-1 transmission is usually initiated by a single viral strain called transmitted/ founder (T/F) virus. In in vitro models, HIV-1 can efficiently spread via cell-free and virological synapse (VS)-mediated cell-to-cell infection. Both modes of infection require the viral glycoprotein Envelope (Env). The efficiency with which T/F Envs initiate VS and mediate cell-to-cell infection has not been well characterized. Here we tested a panel of isogenic HIV-1 molecular clones that carry different Clade B T/F Envs. We found that despite variable infectivity among different Env clones in the two modes of infection, T/F Envs generally mediated efficient VS formation and subsequent cell-to-cell transfer. In contrast, in vitro infectivity of the T/F Env clones was more variable and strongly correlated with intrinsic fusogenicity of various Envs. We speculate that the conservation of cell-to-cell transfer by T/F Env is indicative of a biologically important function of Env.


Asunto(s)
Infecciones por VIH/transmisión , Infecciones por VIH/virología , VIH-1/patogenicidad , Internalización del Virus , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , VIH-1/genética , VIH-1/fisiología , Humanos , Membranas Sinápticas/virología , Ensamble de Virus , Replicación Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
17.
Cell Rep ; 25(10): 2821-2835.e7, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30517869

RESUMEN

During development, hematopoietic stem and progenitor cells (HSPCs) arise from specialized endothelial cells by a process termed endothelial-to-hematopoietic transition (EHT). The genetic program driving human HSPC emergence remains largely unknown. We previously reported that the generation of hemogenic precursor cells from mouse fibroblasts recapitulates developmental hematopoiesis. Here, we demonstrate that human fibroblasts can be reprogrammed into hemogenic cells by the same transcription factors. Induced cells display dynamic EHT transcriptional programs, generate hematopoietic progeny, possess HSPC cell surface phenotype, and repopulate immunodeficient mice for 3 months. Mechanistically, GATA2 and GFI1B interact and co-occupy a cohort of targets. This cooperative binding is reflected by engagement of open enhancers and promoters, initiating silencing of fibroblast genes and activating the hemogenic program. However, GATA2 displays dominant and independent targeting activity during the early phases of reprogramming. These findings shed light on the processes controlling human HSC specification and support generation of reprogrammed HSCs for clinical applications.


Asunto(s)
Reprogramación Celular , Hemangioblastos/citología , Hemangioblastos/metabolismo , Factores de Transcripción/metabolismo , Adulto , Secuencia de Bases , Elementos de Facilitación Genéticos/genética , Fibroblastos/metabolismo , Factor de Transcripción GATA2/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Recién Nacido , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica
18.
Sci Transl Med ; 10(461)2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282696

RESUMEN

Gut homing CD4+ T cells expressing the integrin α4ß7 are early viral targets and contribute to HIV-1 pathogenesis, likely by seeding the gastrointestinal (GI) tract with HIV. Although simianized anti-α4ß7 monoclonal antibodies have shown promise in preventing or attenuating the disease course of simian immunodeficiency virus in nonhuman primate studies, the mechanisms of drug action remain elusive. We present a cohort of individuals with mild inflammatory bowel disease and concomitant HIV-1 infection receiving anti-α4ß7 treatment. By sampling the immune inductive and effector sites of the GI tract, we have discovered that anti-α4ß7 therapy led to a significant and unexpected attenuation of lymphoid aggregates, most notably in the terminal ileum. Given that lymphoid aggregates serve as important sanctuary sites for maintaining viral reservoirs, their attrition by anti-α4ß7 therapy has important implications for HIV-1 therapeutics and eradication efforts and defines a rational basis for the use of anti-α4ß7 therapy in HIV-1 infection.


Asunto(s)
Tracto Gastrointestinal/patología , Tracto Gastrointestinal/virología , Infecciones por VIH/terapia , Integrinas/antagonistas & inhibidores , Tejido Linfoide/patología , Adulto , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Linfocitos B/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Humanos , Integrinas/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Masculino , Persona de Mediana Edad , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
J Vis Exp ; (138)2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30176017

RESUMEN

This assay is designed to specifically report on HIV-1 fusion via the expression of green fluorescent protein (GFP) detectable by flow cytometry or fluorescence microscopy. An HIV-1 reporter virus (HIV-1 Gag-iCre) is generated by inserting Cre recombinase into the HIV-1 genome between the matrix and the capsid proteins of the Gag polyprotein. This results in a packaging of Cre recombinase into virus particles, which is then released into a target cell line stably expressing a Cre recombinase-activated red fluorescent protein (RFP) to GFP switch cassette. In the basal state, this cassette expresses RFP only. Following the delivery of Cre recombinase into the target cell, the RFP, flanked by loxP sites, excises, resulting in GFP expression. This assay can be used to test any inhibitors of viral entry (specifically at the fusion step) in cell-free and cell-to-cell infection systems and has been used to identify a class of purinergic receptor antagonists as novel inhibitors of HIV-1 viral membrane fusion.


Asunto(s)
VIH-1/genética , Integrasas/genética , Línea Celular , Humanos , Transfección , Virión
20.
J Virol ; 91(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28148796

RESUMEN

Broadly neutralizing antibodies (bNAbs) have been isolated from HIV-1 patients and can potently block infection of a wide spectrum of HIV-1 subtypes. These antibodies define common epitopes shared by many viral isolates. While bNAbs potently antagonize infection with cell-free virus, inhibition of HIV-1 transmission from infected to uninfected CD4+ T cells through virological synapses (VS) has been found to require greater amounts of antibody. In this study, we examined two well-studied molecular clones and two transmitted/founder (T/F) clones for their sensitivities to a panel of bNAbs in cell-free and cell-to-cell infection assays. We observed resistance of cell-to-cell transmission to antibody neutralization that was reflected not only by reductions of antibody potency but also by decreases in maximum neutralization capacity relative to the levels seen with cell-free infections. BNAbs targeting different epitopes exhibited incomplete neutralization against cell-associated virus with T/F Envs, which was not observed with the cell-free form of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif as a determinant that can affect the incomplete neutralization of these T/F clones in cell-to-cell infection. These findings indicate that the signal that affects surface expression and/or internalization of Env from the plasma membrane can modulate the presentation of neutralizing epitopes on infected cells. These results highlight that a fraction of virus can escape from high concentrations of antibody through cell-to-cell infection while remaining sensitive to neutralization in cell-free infection. The ability to fully inhibit cell-to-cell transmission may represent an important consideration in the development of antibodies for treatment or prophylaxis.IMPORTANCE In recent years, isolation of new-generation HIV-1 bNAbs has invigorated HIV vaccine research. These bNAbs display remarkable potency and breadth of coverage against cell-free virus; however, they exhibit a diminished ability to block HIV-1 cell-to-cell transmission. The mechanism(s) by which HIV-1 resists neutralization when transmitting through VS remains uncertain. We examined a panel of bNAbs for their ability to neutralize HIV-1 T/F viruses in cell-to-cell infection assays. We found that some antibodies exhibit not only reduced potency but also decreased maximum neutralization capacity or in vitro efficacy against cell-to-cell infection of HIV-1 with T/F Envs compared to cell-free infection of the same virus. We further identified the membrane-proximal internal tyrosine-based sorting motif YXXL as a determinant that can affect the incomplete neutralization phenotype of these T/F clones. When the maximum neutralization capacity falls short of 100%, this can have a major impact on the ability of antibodies to halt viral replication.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/transmisión , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Línea Celular Tumoral , Epítopos/inmunología , Células HEK293 , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Células Jurkat , Pruebas de Neutralización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...