Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(4): 1691-1697, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38167732

RESUMEN

Lead-based two-dimensional organic-inorganic hybrid perovskites (2D HOIPs) are popular materials with various optical properties, which can be tuned through metal ion doping. Due to the size and valence misfit, metal ion dopants in 2D lead-based HOIPs are still limited. In this work, Mn2+, Sb3+ and Bi3+ are doped into 2D (HDA)2PbBr4 (HDA = protonated dopamine) successfully. As a result, the dopants in 2D (HDA)2PbBr4 can induce their characteristic optical spectra, which is studied at different temperatures and excitation powers. The temperature-dependent energy transfer in the Mn-doped sample has been clarified, in which abnormal phenomena including negative thermal quenching have been observed. In addition, the dopant ions can impact the phase transition temperatures of the samples, especially lowering their crystallization temperatures greatly. The mussel-inspired organic cation, feasible metal ion regulation, and superior stability provide (HDA)2PbBr4 potential for further applications.

2.
Dalton Trans ; 52(44): 16336-16344, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37856230

RESUMEN

Zinc sulfide (ZnS) is a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity, abundance, cost-effectiveness, and environmental friendliness. Herein, a hydrangea-like ZnS-carbon composite (ZnS-NC) is synthesized through the hydrothermal method and subsequent pyrolysis of a supramolecular precursor guanosine. The resulting composite comprises ultrafine ZnS nanoparticles firmly stabilized on a nitrogen-doped carbon matrix, featuring mesoporous channels and high surface areas. When utilized as an anode material for LIBs, the initial discharge specific capacity of the ZnS-NC electrode reaches an impressive value of 944 mA h g-1 at 1.0 A g-1, and even after 450 cycles, it maintains a reversible capacity of 597 mA h g-1. Compared with pure ZnS, the ZnS-NC composite exhibits significantly improved rate performance and cycling stability. This enhancement in Li-storage performance can be attributed to a synergistic effect within the ZnS-NC composite, which arises from the large exposed active site area, efficient ion/electron transfer, and strong interaction between the ZnS nanoparticles and the carbon framework. Overall, this work presents an eco-friendly approach for developing metal sulfide-carbon composites with exceptional potential for energy storage applications.

3.
Inorg Chem ; 62(2): 1062-1068, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36594447

RESUMEN

Polydopamine (PDA) is a good adhesion agent for lots of gels inspired by the mussel, whereas hybrid organic-inorganic perovskites (HOIPs) usually exhibit extraordinary optoelectronic performance. Herein, mussel-inspired chemistry has been integrated with two-dimensional HOIPs first, leading to the preparation of new crystal (HDA)2PbBr4 (1) (DA = dopamine). The organic cation dopamine can be introduced into PDA resulting in a thin film of (HPDA)2PbBr4 (PDA-1). The dissolved inorganic components of layered perovskite in DMF solution together with H2O2 addition can facilitate DA polymerization greatly. More importantly, PDA-1 can inherit an excellent semiconductor property of HOIPs and robust adhesion of the PDA hydrogel resulting in a self-adhesive photoelectric coating on various interfaces.


Asunto(s)
Adhesivos , Dopamina , Dopamina/química , Cementos de Resina , Polimerizacion , Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...