Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(8): 107554, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002667

RESUMEN

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, also exhibits nuclear genomic localization and is involved in DNA damage signaling. In this study, we investigated the impact of cGAS crotonylation on the regulation of the DNA damage response, particularly homologous recombination repair, following exposure to ionizing radiation (IR). Lysine 254 of cGAS is constitutively crotonylated by the CREB-binding protein; however, IR-induced DNA damage triggers sirtuin 3 (SIRT3)-mediated decrotonylation. Lysine 254 decrotonylation decreased the DNA-binding affinity of cGAS and inhibited its interaction with PARP1, promoting homologous recombination repair. Moreover, SIRT3 suppression led to homologous recombination repair inhibition and markedly sensitized cancer cells to IR and DNA-damaging chemicals, highlighting SIRT3 as a potential target for cancer therapy. Overall, this study revealed the crucial role of cGAS crotonylation in the DNA damage response. Furthermore, we propose that modulating cGAS and SIRT3 activities could be potential strategies for cancer therapy.

2.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38935071

RESUMEN

Advances in chromatin mapping have exposed the complex chromatin hierarchical organization in mammals, including topologically associating domains (TADs) and their substructures, yet the functional implications of this hierarchy in gene regulation and disease progression are not fully elucidated. Our study delves into the phenomenon of shared TAD boundaries, which are pivotal in maintaining the hierarchical chromatin structure and regulating gene activity. By integrating high-resolution Hi-C data, chromatin accessibility, and DNA double-strand breaks (DSBs) data from various cell lines, we systematically explore the complex regulatory landscape at high-level TAD boundaries. Our findings indicate that these boundaries are not only key architectural elements but also vibrant hubs, enriched with functionally crucial genes and complex transcription factor binding site-clustered regions. Moreover, they exhibit a pronounced enrichment of DSBs, suggesting a nuanced interplay between transcriptional regulation and genomic stability. Our research provides novel insights into the intricate relationship between the 3D genome structure, gene regulation, and DNA repair mechanisms, highlighting the role of shared TAD boundaries in maintaining genomic integrity and resilience against perturbations. The implications of our findings extend to understanding the complexities of genomic diseases and open new avenues for therapeutic interventions targeting the structural and functional integrity of TAD boundaries.


Asunto(s)
Cromatina , Roturas del ADN de Doble Cadena , Reparación del ADN , Regulación de la Expresión Génica , Humanos , Cromatina/metabolismo , Cromatina/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Animales , Genómica/métodos , Inestabilidad Genómica , Ensamble y Desensamble de Cromatina
3.
Nucleic Acids Res ; 52(13): 7610-7626, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38813828

RESUMEN

Gene expression is temporally and spatially regulated by the interaction of transcription factors (TFs) and cis-regulatory elements (CREs). The uneven distribution of TF binding sites across the genome poses challenges in understanding how this distribution evolves to regulate spatio-temporal gene expression and consequent heritable phenotypic variation. In this study, chromatin accessibility profiles and gene expression profiles were collected from several species including mammals (human, mouse, bovine), fish (zebrafish and medaka), and chicken. Transcription factor binding sites clustered regions (TFCRs) at different embryonic stages were characterized to investigate regulatory evolution. The study revealed dynamic changes in TFCR distribution during embryonic development and species evolution. The synchronization between TFCR complexity and gene expression was assessed across species using RegulatoryScore. Additionally, an explainable machine learning model highlighted the importance of the distance between TFCR and promoter in the coordinated regulation of TFCRs on gene expression. Our results revealed the developmental and evolutionary dynamics of TFCRs during embryonic development from fish, chicken to mammals. These data provide valuable resources for exploring the relationship between transcriptional regulation and phenotypic differences during embryonic development.


Asunto(s)
Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Aprendizaje Automático , Factores de Transcripción , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Humanos , Ratones , Bovinos , Oryzias/genética , Oryzias/metabolismo , Oryzias/embriología , Pollos/genética , Desarrollo Embrionario/genética , Regiones Promotoras Genéticas , Cromatina/metabolismo , Cromatina/genética
4.
IEEE Trans Vis Comput Graph ; 28(10): 3441-3455, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750691

RESUMEN

The increased availability of quantitative historical datasets has provided new research opportunities for multiple disciplines in social science. In this article, we work closely with the constructors of a new dataset, CGED-Q (China Government Employee Database-Qing), that records the career trajectories of over 340,000 government officials in the Qing bureaucracy in China from 1760 to 1912. We use these data to study career mobility from a historical perspective and understand social mobility and inequality. However, existing statistical approaches are inadequate for analyzing career mobility in this historical dataset with its fine-grained attributes and long time span, since they are mostly hypothesis-driven and require substantial effort. We propose CareerLens, an interactive visual analytics system for assisting experts in exploring, understanding, and reasoning from historical career data. With CareerLens, experts examine mobility patterns in three levels-of-detail, namely, the macro-level providing a summary of overall mobility, the meso-level extracting latent group mobility patterns, and the micro-level revealing social relationships of individuals. We demonstrate the effectiveness and usability of CareerLens through two case studies and receive encouraging feedback from follow-up interviews with domain experts.


Asunto(s)
Movilidad Laboral , Gráficos por Computador , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA