Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Med (Beijing) ; 3(2): 100111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948389

RESUMEN

Background: Swift and accurate detection of Vibrio parahaemolyticus, which is a prominent causative pathogen associated with seafood contamination, is required to effectively combat foodborne disease and wound infections. The toxR gene is relatively conserved within V. parahaemolyticus and is primarily involved in the expression and regulation of virulence genes with a notable degree of specificity. The aim of this study was to develop a rapid, simple, and constant temperature detection method for V. parahaemolyticus in clinical and nonspecialized laboratory settings. Methods: In this study, specific primers and CRISPR RNA were used to target the toxR gene to construct a reaction system that combines recombinase polymerase amplification (RPA) with CRISPR‒Cas13a. The whole-genome DNA of the sample was extracted by self-prepared sodium dodecyl sulphate (SDS) nucleic acid rapid extraction reagent, and visual interpretation of the detection results was performed by lateral flow dipsticks (LFDs). Results: The specificity of the RPA-CRISPR/Cas13a-LFD method was validated using V. parahaemolyticus strain ATCC-17802 and six other non-parahaemolytic Vibrio species. The results demonstrated a specificity of 100%. Additionally, the genomic DNA of V. parahaemolyticus was serially diluted and analysed, with a minimum detectable limit of 1 copy/µL for this method, which was greater than that of the TaqMan-qPCR method (102 copies/µL). The established methods were successfully applied to detect wild-type V. parahaemolyticus, yielding results consistent with those of TaqMan-qPCR and MALDI-TOF MS mass spectrometry identification. Finally, the established RPA-CRISPR/Cas13a-LFD method was applied to whole blood specimens from mice infected with V. parahaemolyticus, and the detection rate of V. parahaemolyticus by this method was consistent with that of the conventional PCR method. Conclusions: In this study, we describe an RPA-CRISPR/Cas13a detection method that specifically targets the toxR gene and offers advantages such as simplicity, rapidity, high specificity, and visual interpretation. This method serves as a valuable tool for the prompt detection of V. parahaemolyticus in nonspecialized laboratory settings.

2.
Dalton Trans ; 53(12): 5416-5426, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38450555

RESUMEN

The development of an electrochemical energy storage system with exceptional performance is an important way to address the energy crisis and environmental pollution of the modem world. In this study, an NiCo2O4@MnS composite with a unique hierarchical structure has been successfully synthesized on an NF substrate using the hydrothermal-electrodeposition method. The results indicate that NiCo2O4@MnS possesses superior specific capacitance and excellent cycling stability. At a current density of 2 A g-1, its specific capacitance can reach 2100 F g-1, while the capacitance retention is still 76% after 10 000 cycles at 10 A g-1. Moreover, when the current density is 1 A g-1, the assembled NiCo2O4@MnS//AC device can deliver a specific capacitance of 203 F g-1, and the energy density is up to 55 W h kg-1 at a power density of 697 W kg-1. These outstanding electrochemical properties of NiCo2O4@MnS can be ascribed to the increase in ion diffusion, specific surface area and electronic conductivity due to its unique hierarchical structure and introduction of MnS.

3.
Chem Commun (Camb) ; 60(18): 2540-2543, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38332746

RESUMEN

A NiB binary catalyst with a unique mulberry-like nanoparticle morphology has been prepared by one-step electrodeposition. The NiB-0.2 catalyst exhibits excellent catalytic activity, selectivity, and stability for the borohydride oxidation reaction. Moreover, a direct borohydride fuel cell using the NiB-0.2 catalyst anode can deliver a peak power density of 453 mW cm-2 and open-circuit voltage of 1.96 V at 343 K. The improved performances are due to the introduction of B. This study may inspire the development of efficient noble-metal-free anode catalysts for DBFCs.

4.
Front Microbiol ; 15: 1325505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318339

RESUMEN

The rumen serves as a complex ecosystem, harboring diverse microbial communities that play crucial ecological roles. Because previous studies have predominantly focused on anaerobic microorganisms, limited attention has been given to aerobic microorganisms in the goat rumen. This study aims to explore the diversity of aerobic microorganisms in the rumen and understand their niche and ecological roles. Rumen fluid samples were collected from 6 goats at different time points post-morning feeding. pH, NH3-N, and volatile fatty acid (TVFA) concentrations were measured, while In vitro cultivation of aerobic microorganisms was performed using PDA medium. Internal Transcribed Spacer (ITS) and 16S sequencing unveiled microbial diversity within the rumen fluid samples. Evidence of obligate aerobic microorganisms in the goat rumen suggests their potential contribution to ecological functionalities. Significantly, certain aerobic microorganisms exhibited correlations with TVFA levels, implying their involvement in TVFA metabolism. This study provides evidence of the existence and potential ecological roles of obligate aerobic microorganisms in the goat rumen. The findings underscore the significance of comprehensively deciphering goat rumen microbial communities and their interactions, with aerobes regarded as permanent residents rather than transients. These insights form a solid foundation for advancing our understanding of the intricate interplay between goat and their aerobic microorganisms in the rumen.

5.
World J Microbiol Biotechnol ; 40(2): 51, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38146036

RESUMEN

Vibrio alginolyticus (V. alginolyticus) is a common pathogen in the ocean. In addition to causing serious economic losses in aquaculture, it can also infect humans. The rapid detection of nucleic acids of V. alginolyticus with high sensitivity and specificity in the field is very important for the diagnosis and treatment of infection caused by V. alginolyticus. Here, we established a simple, fast and effective molecular method for the identification of V. alginolyticus that does not rely on expensive instruments and professionals. The method integrates recombinase polymerase amplification (RPA) technology with CRISPR system in a single PCR tube. Using this method, the results can be visualized by lateral flow dipstick (LFD) in less than 50 min, we named this method RPA-CRISPR/Cas13a-LFD. The method was confirmed to achieve high specificity for the detection of V. alginolyticus with no cross-reactivity with similar Vibrio and common clinical pathogens. This diagnostic method shows high sensitivity; the detection limit of the RPA-CRISPR/Cas13a-LFD is 10 copies/µL. We successfully identified 35 V. alginolyticus strains from a total of 55 different bacterial isolates and confirmed their identity by (Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, MALDI-TOF MS). We also applied this method on infected mice blood, and the results were both easily and rapidly obtained. In conclusion, RPA-CRISPR/Cas13a-LFD offers great potential as a useful tool for reliable and rapid diagnosis of V. alginolyticus infection, especially in limited conditions.


Asunto(s)
Recombinasas , Vibrio alginolyticus , Animales , Humanos , Ratones , Recombinasas/metabolismo , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos
6.
Anim Biotechnol ; 34(9): 5075-5086, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946542

RESUMEN

The rumen is a complex ecosystem containing a variety of fungi, which are crucial for the digestive activities of ruminants. Previous research on rumen fungi has mainly focused on anaerobic fungi, given the rumen's reputation as a mainly anaerobic environment. The objective of this study was to investigate rumen fungal diversity and the presence of aerobic fungi in buffalo fed on different diets. Three adult buffaloes were used as experimental animals. Alfalfa hay, oat hay, whole corn silage, sugarcane shoot silage, fresh king grass, dried rice straw, and five kinds of mixed diets with concentrate to roughage ratios of 20:80, 35:65, 50:50, 65:35, and 80:20 were used as the experimental diets. The experimental animals were fed different diets for 22 days. Rumen fluid was collected from the rumen fistula for ITS (Internal Transcribed Spacer) sequencing 2 h after feeding on the morning of day 22. The results indicate the presence of large quantities of aerobic fungi in the rumen of the buffaloes 2 h after feeding and suggest that Ascomycota and Basidiomycota are the dominant fungal groups under different feeding conditions. The study also identified 62 different fungal types, which showed significant differences among the 11 experimental diets.


Asunto(s)
Búfalos , Rumen , Animales , Femenino , Alimentación Animal/análisis , Dieta/veterinaria , Hongos , Lactancia , Leche
7.
Dalton Trans ; 52(34): 12002-12009, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37581213

RESUMEN

We successfully fabricated a novel tensile lattice strained Ni@NiCu catalyst with a popcorn-like morphology, which is composed of a crystalline Ni core and a NiCu alloy shell. It exhibits outstanding catalytic activity, selectivity, and stability towards borohydride electrooxidation. Moreover, a direct borohydride fuel cell (DBFC) with a Ni@NiCu anode can deliver a power density of 433 mW cm-2 and an open circuit voltage of 1.94 V, much better than the performances of DBFCs employing other anode catalysts reported in the literature. This could be attributed to the fact that the tensile lattice strain generated by the introduction of Cu leads to a rise in the d-band center of the Ni metal and promotes the final B-H decoupling, which is the rate-determining step in the borohydride oxidation reaction, thus improving remarkably the catalytic performances of Ni@NiCu.

8.
J Transl Med ; 21(1): 453, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422632

RESUMEN

BACKGROUND: USP51 is a deubiquitinase (DUB), that is involved in diverse cellular processes. Accumulating evidence has demonstrated that USP51 contributes to cancer development. However, its impact on non-small cell lung carcinoma (NSCLC) cell malignancy is largely unknown. METHODS: In this study, we performed bioinformatics analysis on a dataset from The Cancer Genome Atlas to determine the association between USP51 and cell stemness marker expression in NSCLC patients. RT‒qPCR, Western blotting, and flow cytometry were performed to examine the effects of USP51 depletion on stemness marker expression. Colony formation and tumor sphere formation assays were used to assess the stemness of NSCLC cells. A cycloheximide chase time-course assay and a polyubiquitination assay were carried out to analyze the effects of USP51 on the TWIST1 protein level. TWIST1 was overexpressed in USP51 knockdown NSCLC cells to determine whether TWIST1 is required. The effect of USP51 on the in vivo growth of NSCLC cells was tested through subcutaneous injections in mice. RESULTS: We found that USP51 deubiquitinates TWIST1, which is significantly upregulated in the tissues of patients with NSCLC and is closely associated with poor prognosis. USP51 expression was positively correlated with the expression of stemness marker CD44, SOX2, NANOG, and OCT4 in NSCLC patients. USP51 depletion attenuated mRNA, protein, and cell surface expression of stemness markers and the stemness of NSCLC cells. Ectopic USP51 expression potentiated the stability of the TWIST1 protein by attenuating its polyubiquitination. In addition, TWIST1 re-expression in NSCLC cells reversed the inhibitory effect of USP51 knockdown on cell stemness. Furthermore, the in vivo results confirmed the suppressive effect of USP51 depletion on NSCLC cell growth. CONCLUSIONS: Our results show that USP51 maintains the stemness of NSCLC cells by deubiquitinating TWIST1. Knocking it down reduces both cell stemness and growth of NSCLC cells.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteína 1 Relacionada con Twist , Proteasas Ubiquitina-Específicas , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Proteína 1 Relacionada con Twist/genética , Proteína 1 Relacionada con Twist/metabolismo , Humanos , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
9.
Dalton Trans ; 52(30): 10557-10566, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458614

RESUMEN

As a promising supercapacitor electrode material, NiMn-LDH has attracted great attention due to its high theoretical capacity and easy preparation. However, the development and application of NiMn-LDH in supercapacitors are limited because of its poor cycling stability and low electrical conductivity. To solve these problems, a NiMnMg-LDH with a three-dimensional porous morphology has been successfully fabricated by doping with Mg to improve its electrochemical properties. Experimental results indicate that NiMnMg-LDH-7 delivers a specific capacitance of 1772 F g-1 at a current density of 1 A g-1. Moreover, it can still reach 1080 F g-1 when the current density is increased 10 times, suggesting excellent rate capability. The asymmetric supercapacitor (ASC) NiMnMg-LDH-7//AC can provide a high energy density of 28 W h kg-1 at a power density of 700 W kg-1. Furthermore, the energy density can still reach 16 W h kg-1 even if the power density is increased to close to 3500 W kg-1. The capacity retention of this ASC device can reach 74% after 3000 cycles at a current density of 3 A g-1. These excellent properties of NiMnMg-LDH can be attributed to the obvious improvement of its specific surface area and electrical conductivity owing to doping with the element magnesium. We believe that this work could provide a new idea for the preparation of high-performance electrode materials for supercapacitors.

10.
Small ; 19(23): e2207675, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36897005

RESUMEN

The poor oxygen diffusion and sluggish oxygen reduction reaction (ORR) kinetics at multiphase interfaces in the cathode suppress the practical application of zinc-air batteries. Developing effective strategies to tackle the issue is of great significance for overcoming the performance bottleneck but remains challenging. Here, a multiscale hydrophobic surface is designed on the iron single-atom catalyst via a gas-phase fluorination-assisted method inspired by the structure of gas-trapping mastoids on lotus leaves. The hydrophobic Fe-FNC attains a higher peak power density of up to 226 mW cm-2 , a long durability of up close to 140 h, and better cyclic durability of up to 300 cycles compared to the corresponding Pt/C-based Zn-air battery. Experiments and theoretical calculations indicate that the formed more triple-phase interfaces and exposed isolated Fe-N4 sites are proposed as the governing factors in boosting electrocatalytic ORR activity and remarkable cycling durability for Zn-air batteries.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36780394

RESUMEN

The low specific capacity and Mg non-affinity of graphite limit the energy density of ion rechargeable batteries. Here, we first identify that the monolayer C12-3-3 in sp2-sp3 carbon hybridization with high Li/Mg affinity is an appropriate anode material for Li-ion batteries and Mg-ion batteries via the first-principles simulations. The monolayer C12-3-3 can achieve high specific capacities of 1181 mAh/g for Li and 739 mAh/g for Mg, higher than those of most previous anodes. The Li storage reaction is an "adsorption-conversion-intercalation mechanism", while the Mg storage reaction is an "adsorption mechanism". The 2D carbon material of C12-3-3 displays fast diffusion kinetics with low diffusion barriers of 0.41 eV for Li and 0.21 eV for Mg. As a new carbon-based anode material, the monolayer C12-3-3 will promote the practical application of batteries with high-capacity and high-rate performance.

12.
Dalton Trans ; 52(5): 1378-1387, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36633553

RESUMEN

A Ni-Co alloy catalyst with a unique succulent-plant-like morphology is prepared by a simple electrodeposition method, while the effects of deposition conditions on its performance are also investigated systematically. The research results show that the Ni0.889-Co0.111 catalyst exhibits excellent activity, selectivity, and stability to the borohydride oxidation reaction. Moreover, when Ni0.889-Co0.111 is assembled as the anode catalyst, the direct borohydride fuel cell delivers a peak power density of 490 mW cm-2 and an open-circuit voltage of 1.87 V at 343 K and can run stably for dozens of hours. The significant improvement in Ni-Co catalyst performance can be attributed to its unique succulent-plant-like morphology and the introduction of an appropriate amount of Co.

13.
Anim Biotechnol ; 34(4): 1514-1523, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35167410

RESUMEN

The purpose of this study was to explore the effects of Rice straw and King grass on apparent digestibility, ruminal bacterial, and fungus composition in buffaloes. Three ruminal fistulated buffaloes were used in a 3 × 2 Latin square design. The dietary treatments were king grass and straw hay. Experimental animals were kept in individual pens and concentrate was offered at 1 kg/d while roughage was fed ad libitum. Each period lasted for 15d, with the first 12d for an adaptation period, followed by a 3-day formal trial period. King grass has higher digestibility of protein. Rice straw has higher digestibility to cellulose. The results showed that when buffaloes were fed king grass and straw, Bacteroidetes were dominant in the rumen normal flora, but firmicutes were not. In addition, the results of this experiment suggest that increasing protein content in diets may be beneficial to increase the relative abundance of Proteobacteria. Similarly, higher dietary fiber content may be beneficial for increasing relative abundance of Prevotella and Staphylococcus. The dominant fungi in ruminal fluid 2 h after ingestion were aerobic fungi. These aerobic fungi most likely entered the rumen with food. Whether and how long aerobic fungi can survive in the rumen needs more research.


Asunto(s)
Oryza , Poaceae , Animales , Búfalos/metabolismo , Alimentación Animal/análisis , Rumen/metabolismo , Dieta
14.
Materials (Basel) ; 17(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203860

RESUMEN

Developing catalysts with superior activity to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is equally important to the overall photoelectrochemical water splitting to produce hydrogen. In this work, bismuth oxyiodide (BiOI), iron-modified bismuth iodide Fe/BiOI, and the sulfurized S-Fe/BiOI were prepared using the solvothermal method. The three materials all have good absorption ability for visible light. The photoelectrochemical catalytic activity of BiOI to oxygen evolution reaction (OER) is significantly enhanced after iron modification, while the sulfurized product S-Fe/BiOI exhibits better catalytic activity to hydrogen evolution reaction (HER). Hence, OER and HER can be simultaneously catalyzed by using Fe/BiOI and S-Fe/BiOI as anodic and cathodic catalysts to facilitate the overall photoelectrochemical water splitting process.

15.
RSC Adv ; 12(45): 29177-29186, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36320774

RESUMEN

Electrodes for supercapacitors made from metal-organic frameworks (MOFs) are still hindered by electron transfer properties. Therefore, an electrode composite material Ni-MOF@PPy was synthesized from a Ni-based metal-organic framework (Ni-MOF) doped with poly-pyrrole (PPy) using a simple chemical oxidation method to improve its electron transfer property. After introducing the electrochemically active substance K4Fe(CN)6 into the electrolyte, the composite material had a specific capacitance of 1815.4 F g-1 at a current density of 1 A g-1. Ni-MOF@PPy and active carbon (AC) as the positive and negative electrodes have been used, respectively, to assemble asymmetric supercapacitors (ASCs) in the KOH and K4Fe(CN)6 mixed electrolyte. This novel Ni-MOF@PPy//AC ASC energy storage device can provide 38.5 W h kg-1 energy density, 7001 W kg-1 power density, and 90.2% capacitance retention after 3000 cycles. Therefore, Ni-MOF@PPy//AC ASC is an excellent energy storage device with practical and economic value. The synergistic effect strategy proposed in this work can be easily applied to develop other MOFs with unique crystal structures as well as other redox active additives, providing new avenues and research ideas for exploring novel energy storage devices.

16.
Viral Immunol ; 35(9): 579-585, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36342780

RESUMEN

Tumor necrosis factor superfamily 14 (TNFSF14) (LIGHT) is an interesting costimulatory molecule associated with T lymphocyte activation, and it mainly exerts its biological effects by binding to its receptors herpesvirus invasion mediator (HVEM) and lymphotoxin-ß receptor. Research shows that TNFSF14 plays a critical regulatory role in immune responses to viral infection, but its role is different in different diseases. TNFSF14 can be a cytokine neutralization target during novel coronavirus infection, and anti-TNFSF14 monoclonal antibody treatment can reduce the risk of respiratory failure and mortality. When the host is infected with adenovirus, TNFSF14 can be used as an inflammatory biomarker to indicate whether there was an adenovirus infection in the host and the degree of disease caused by viral infection. When hosts suffer influenza virus infection, the TNFSF14-HVEM signaling pathway can stimulate the maturation and proliferation of memory CD8+ T cells, which helps the host immune system stimulate a second immune response against respiratory virus infection. TNFSF14 can act as an immune adjuvant and enhance the immunogenicity of the human papillomavirus (HPV) DNA vaccine when the host is infected with HPV. During hepatitis virus infection, TNFSF14 acts as a proinflammatory factor, participates in inflammation and causes tissue damage. In conclusion, TNFSF14 plays different and significant roles in diverse viral infections. This article reviews the current research on TNFSF14 in antiviral immunity.


Asunto(s)
COVID-19 , Infecciones por Papillomavirus , Humanos , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Linfocitos T CD8-positivos/metabolismo , Antivirales , Transducción de Señal , Factor de Necrosis Tumoral alfa
17.
Front Chem ; 10: 914699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769441

RESUMEN

The organic small molecule fuel battery has attracted wild attention in recent years. Unfortunately, the inherent catalyst poisoning phenomenon hinders its commercialization. Exploring the anodic catalytic reaction mechanism is urgent. This article investigates the nucleation mechanism of HCOOH on the catalyst electrode surface. The electrochemical results indicate that the HCOOH oxidation conforms to the two-dimensional instantaneous nucleation process. The corresponding adsorption model of CO on the catalyst surface was finally established.

18.
Front Chem ; 10: 940559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769447

RESUMEN

Analysis of nucleation/growth dynamics is important to understand the molecular mechanism on the electrode surface. The electrocrystallization mechanism of Mg anode in aqueous electrolyte was comprehensively investigated which can help us understand the surface discharge mechanism of Mg anode and provide a new theoretical idea for the development of high performance magnesium ion battery. The influence of applied potential signals on normal growth constant and active site numbers was studied using i-t transient curves. The dimensionless processed transient curves confirmed that the initial nucleation/growth process of Mg electrode in aqueous solution followed the diffusion-controlled three-dimensional instantaneous nucleation model.

19.
Phys Chem Chem Phys ; 24(4): 2150-2157, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34994764

RESUMEN

Although magnesium rechargeable batteries (MRBs) have gained considerable attention, research relating to MRBs is still in its infancy. One issue is that magnesium ions are difficult to reversibly (de)intercalate in most electrode materials. Among various available cathodes, VO2(B) is a promising layered cathode material for use in MRBs. Totally different from monolayer VO2, the magnesiation mechanism in monoclinic bulk VO2(B) has not been clearly clarified to this day. For the first time, we systematically investigated the influence of magnetism and van der Waals (vdW) forces on the electronic structure and diffusion kinetics of magnesium in bulk VO2(B) using a series of DFT+U calculations. The Mg diffusivity can reach a high value of 1.62 × 10-7 cm2 s-1 at 300 K, which is comparable to Li+. These results demonstrate that VO2(B) is a potential host material with high mobility and fast kinetics.

20.
ACS Appl Mater Interfaces ; 14(3): 3910-3918, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35020345

RESUMEN

A porous Ni-Cu alloy dendrite catalyst covered by Ni nanoparticles (Ni-np@NC) has been fabricated by an ultrafast and controllable strategy. The research results show that the morphology of the Ni-Cu alloy depends strongly on the Cu2+concentration. Moreover, the Ni-np@NC catalyst demonstrates excellent selectivity and activity toward the borohydride oxidation reaction (BOR). Furthermore, on the Ni-np@NC catalyst electrode, the overpotential merely requires 169 mV at a current density of 10 mA cm-2 for BOR, and the fuel efficiency may reach 70%. The direct borohydride fuel cell using the Ni-np@NC/C anode can export a maximum power density of 218 mW cm-2, much higher than that using the noble-based anode reported in the literature. The remarkable enhancement of Ni-np@NC catalyst performances is on the back of the unique morphology of porous dendrite covered by nanoparticles and the introduction of Cu.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...