Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Hortic ; 4(1): 28, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39010247

RESUMEN

Many species of Sapindaceae, such as lychee, longan, and rambutan, provide nutritious and delicious fruit. Understanding the molecular genetic mechanisms that underlie the regulation of flowering is essential for securing flower and fruit productivity. Most endogenous and exogenous flowering cues are integrated into the florigen encoded by FLOWERING LOCUS T. However, the regulatory mechanisms of flowering remain poorly understood in Sapindaceae. Here, we identified 60 phosphatidylethanolamine-binding protein-coding genes from six Sapindaceae plants. Gene duplication events led to the emergence of two or more paralogs of the FT gene that have evolved antagonistic functions in Sapindaceae. Among them, the FT1-like genes are functionally conserved and promote flowering, while the FT2-like genes likely serve as repressors that delay flowering. Importantly, we show here that the natural variation at nucleotide position - 1437 of the lychee FT1 promoter determined the binding affinity of the SVP protein (LcSVP9), which was a negative regulator of flowering, resulting in the differential expression of LcFT1, which in turn affected flowering time in lychee. This finding provides a potential molecular marker for breeding lychee. Taken together, our results reveal some crucial aspects of FT gene family genetics that underlie the regulation of flowering in Sapindaceae.

2.
Hortic Res ; 11(6): uhae116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38919552

RESUMEN

Red fruit peel is an attractive target for pineapple breeding. Various pineapple accessions with distinct red coloration patterns exist; however, the precise molecular mechanism accounting for these differences remains unknown, which hinders the pineapple breeding process from combining high fruit quality with red peel. In this study, we characterized a transcription factor, AcMYB266, which is preferentially expressed in pineapple peel and positively regulates anthocyanin accumulation. Transgenic pineapple, Arabidopsis, and tobacco plants overexpressing AcMYB266 exhibited significant anthocyanin accumulation. Conversely, transient silencing of this gene led to decreased anthocyanin accumulation in pineapple red bracts. In-depth analysis indicated that variations of AcMYB266 sequences in the promoter instead of the protein-coding region seem to contribute to different red coloration patterns in peels of three representative pineapple varieties. In addition, we found that AcMYB266 was located in a cluster of four MYB genes exclusive to and conserved in Ananas species. Of this cluster, each was proved to regulate anthocyanin synthesis in different pineapple tissues, illustrating an interesting case of gene subfunctionalization after tandem duplication. In summary, we have characterized AcMYB266 as a key regulator of pineapple red fruit peel and identified an MYB cluster whose members were subfunctionalized to specifically regulate the red coloration of different pineapple tissues. The present study will assist in establishing a theoretical mechanism for pineapple breeding for red fruit peel and provide an interesting case for the investigation of gene subfunctionalization in plants.

3.
Anal Chem ; 96(24): 10021-10027, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38843243

RESUMEN

Although oxygen reduction reaction (ORR) as an effective signal amplification strategy has been extensively investigated for the improvement of sensitivity of electrochemical sensors, their activity and stability are still a great challenge. Herein, single-atom Fe (FeSA) and Fe nanoparticles (FeNP) on nitrogen-doped carbon (FeSA/FeNP) catalysts demonstrate a highly active and stable ORR performance, thus achieving the sensitive and stable electrochemical sensing of organophosphorus pesticides (OPs). Experimental investigations indicate that FeNP in FeSA/FeNP can improve the ORR activity by adjusting the electronic structure of FeSA active sites. Besides, owing to the excellent catalase-like activity, FeSA/FeNP can rapidly consume in situ generated H2O2 in the ORR process and avoid the leakage of active sites, thereby improving the stability of ORR. Utilizing the excellent ORR performance of FeSA/FeNP, an electrochemical sensor for OPs is established based on the thiocholine-induced poison of the active sites, demonstrating satisfactory sensitivity and stability. This work provides new insight into the design of high performance ORR catalysts for sensitive and stable electrochemical sensing.

4.
Biosens Bioelectron ; 261: 116468, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852326

RESUMEN

Rational design of peroxidase (POD)-like nanozymes with high activity and specificity still faces a great challenge. Besides, the investigations of nanozymes inhibitors commonly focus on inhibition efficiency, the interaction between nanozymes-involved catalytic reactions and inhibitors is rarely reported. In this work, we design a p-block metal Sn-doped Pt (p-d/PtSn) nanozymes with the selective enhancement of POD-like activity. The p-d orbital hybridization interaction between Pt and Sn can effectively optimize the electronic structure of PtSn nanozymes and thus selectively enhance POD-like activity. In addition, the antioxidants as nanozymes inhibitors can effectively inhibit the POD-like activity of p-d/PtSn nanozymes, which results in the fact that antioxidants absorbed on the p-d/PtSn surface can hinder the adsorption of hydrogen peroxide. The inhibition type (glutathione as a model molecule) is reversible mixed-inhibition with inhibition constants (Ki' and Ki) of 0.21 mM and 0.03 mM. Finally, based on the varying inhibition levels of antioxidant molecules, a colorimetric sensor array is constructed to distinguish and simultaneously detect five antioxidants. This work is expected to design highly active and specific nanozymes through p-d orbital hybrid engineering, and also provides insights into the interaction between nanozymes and inhibitors.


Asunto(s)
Antioxidantes , Técnicas Biosensibles , Colorimetría , Platino (Metal) , Colorimetría/métodos , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/análisis , Técnicas Biosensibles/métodos , Platino (Metal)/química , Peroxidasa/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Nanoestructuras/química , Catálisis
5.
Environ Health Perspect ; 132(6): 67009, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896780

RESUMEN

BACKGROUND: Cadmium (Cd) is a highly toxic and widespread environmental oxidative stressor that causes a myriad of health problems, including osteoporosis and bone damage. Although nuclear factor erythroid 2-related factor 2 (NRF2) and its Cap 'n' Collar and basic region Leucine Zipper (CNC-bZIP) family member nuclear factor erythroid 2-related factor 1 (NRF1) coordinate various stress responses by regulating the transcription of a variety of antioxidant and cytoprotective genes, they play distinct roles in bone metabolism and remodeling. However, the precise roles of both transcription factors in bone loss induced by prolonged Cd exposure remain unclear. OBJECTIVES: We aimed to understand the molecular mechanisms underlying Cd-induced bone loss, focusing mainly on the roles of NRF2 and NRF1 in osteoclastogenesis provoked by Cd. METHODS: Male wild-type (WT), global Nrf2-knockout (Nrf2-/-) and myeloid-specific Nrf2 knockout [Nrf2(M)-KO] mice were administered Cd (50 or 100 ppm) via drinking water for 8 or 16 wk, followed by micro-computed tomography, histological analyses, and plasma biochemical testing. Osteoclastogenesis was evaluated using bone marrow-derived osteoclast progenitor cells (BM-OPCs) and RAW 264.7 cells in the presence of Cd (10 or 20 nM) with a combination of genetic and chemical modulations targeting NRF2 and NRF1. RESULTS: Compared with relevant control mice, global Nrf2-/- or Nrf2(M)-KO mice showed exacerbated bone loss and augmented osteoclast activity following exposure to 100 ppm Cd in drinking water for up to 16 wk. In vitro osteoclastogenic analyses suggested that Nrf2-deficient BM-OPCs and RAW 264.7 cells responded more robustly to low levels of Cd (up to 20 nM) with regard to osteoclast differentiation compared with WT cells. Further mechanistic studies supported a compensatory up-regulation of long isoform of NRF1 (L-NRF1) and subsequent induction of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1 (NFATc1) as the key molecular events in the Nrf2 deficiency-worsened and Cd-provoked osteoclastogenesis. L-Nrf1 silenced (via lentiviral means) Nrf2-knockdown (KD) RAW cells exposed to Cd showed dramatically different NFATc1 and subsequent osteoclastogenesis outcomes compared with the cells of Nrf2-KD alone exposed to Cd, suggesting a mitigating effect of the Nrf1 silencing. In addition, suppression of reactive oxygen species by exogenous antioxidants N-acetyl-l-cysteine (2 mM) and mitoquinone mesylate (MitoQ; 0.2µM) mitigated the L-NRF1-associated effects on NFATc1-driven osteoclastogenesis outcomes in Cd-exposed Nrf2-KD cells. CONCLUSIONS: This in vivo and in vitro study supported the authors' hypothesis that Cd exposure caused bone loss, in which NRF2 and L-NRF1 responded to Cd and osteoclastogenic stimuli in a cooperative, but contradictive, manner to coordinate Nfatc1 expression, osteoclastogenesis and thus bone homeostasis. Our study suggests a novel strategy targeting NRF2 and L-NRF1 to prevent and treat the bone toxicity of Cd. https://doi.org/10.1289/EHP13849.


Asunto(s)
Cadmio , Factor 2 Relacionado con NF-E2 , Osteoclastos , Osteogénesis , Animales , Ratones , Masculino , Cadmio/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Osteoclastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Ratones Noqueados , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Diferenciación Celular/efectos de los fármacos
6.
Imeta ; 3(1): e177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868514

RESUMEN

Highlights of ggVennDiagram include: (1) Subset/Region filling Venn diagram up to seven sets; (2) Upset plot with unlimited sets; (3) Venn Calculator for two or more sets; (4) Provide as R package, Shiny App, and TBtools plugin.

7.
J Fungi (Basel) ; 10(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786673

RESUMEN

Phytophthora sojae is a type of pathogenic oomycete that causes Phytophthora root stem rot (PRSR), which can seriously affect the soybean yield and quality. To subvert immunity, P. sojae secretes a large quantity of effectors. However, the molecular mechanisms regulated by most P. sojae effectors, and their host targets remain unexplored. Previous studies have shown that the expression of PsAvh113, an effector secreted by Phytophthora sojae, enhances viral RNA accumulations and symptoms in Nicotiana benthamiana via VIVE assay. In this study, we analyzed RNA-sequencing data based on disease symptoms in N. benthamiana leaves that were either mocked or infiltrated with PVX carrying the empty vector (EV) and PsAvh113. We identified 1769 differentially expressed genes (DEGs) dependent on PsAvh113. Using stricter criteria screening and Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analysis of DEGs, we found that 38 genes were closely enriched in response to PsAvh113 expression. We selected three genes of N. benthamiana (NbNAC86, NbMyb4, and NbERF114) and found their transcriptional levels significantly upregulated in N. benthamiana infected with PVX carrying PsAvh113. Furthermore, individual silencing of these three genes promoted P. capsici infection, while their overexpression increased resistance to P. capsici in N. benthamiana. Our results show that PsAvh113 interacts with transcription factors NbMyb4 and NbERF114 in vivo. Collectively, these data may help us understand the pathogenic mechanism of effectors and manage PRSR in soybeans.

8.
J Integr Plant Biol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804840

RESUMEN

The Sapindaceae family, encompassing a wide range of plant forms such as herbs, vines, shrubs, and trees, is widely distributed across tropical and subtropical regions. This family includes economically important crops like litchi, longan, rambutan, and ackee. With the wide application of genomic technologies in recent years, several Sapindaceae plant genomes have been decoded, leading to an accumulation of substantial omics data in this field. This surge in data highlights the pressing need for a unified genomic data center capable of storing, sharing, and analyzing these data. Here, we introduced SapBase, that is, the Sapindaceae Genome Database. SapBase houses seven published plant genomes alongside their corresponding gene structure and functional annotations, small RNA annotations, gene expression profiles, gene pathways, and synteny block information. It offers user-friendly features for gene information mining, co-expression analysis, and inter-species comparative genomic analysis. Furthermore, we showcased SapBase's extensive capacities through a detailed bioinformatic analysis of a MYB gene in litchi. Thus, SapBase could serve as an integrative genomic resource and analysis platform for the scientific exploration of Sapinaceae species and their comparative studies with other plants.

9.
Nano Lett ; 24(9): 2912-2920, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391386

RESUMEN

Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , Peróxido de Hidrógeno , Masculino , Humanos , Antígeno Prostático Específico , Inmunoensayo/métodos , Antioxidantes , Peroxidasas , Colorimetría/métodos , Técnicas Biosensibles/métodos
10.
Physiol Plant ; 176(2): e14231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419576

RESUMEN

Banana (Musa spp.) production is seriously threatened by low temperature (LT) in tropical and subtropical regions. Xyloglucan endotransglycosylase/hydrolases (XTHs) are considered chief enzymes in cell wall remodelling and play a central role in stress responses. However, whether MaXTHs are involved in the low temperature stress tolerance in banana is not clear. Here, the identification and characterization of MaXTHs were carried out, followed by prediction of their cis-acting elements and protein-protein interactions. In addition, candidate MaXTHs involved in banana tolerance to LT were screened through a comparison of their responses to LT between tolerant and sensitive cultivars using RNA-Seq analysis. Moreover, immunofluorescence (IF) labelling was employed to compare changes in the temporal and spatial distribution of different types of xyloglucan components between these two cultivars upon stress. In total, 53 MaXTHs have been identified, and all were predicted to be located in the cell wall, 14 of them also in the cytoplasm. Only 11 MaXTHs have been found to interact with other proteins. Among 16 MaXTHs with LT responsiveness elements, MaXTH26/29/32/35/50 (Group I/II members) and MaXTH7/8 (Group IIIB members) might be involved in banana tolerance to LT stress. IF results suggested that the content of xyloglucan components recognized by CCRC-M87/103/104/106 antibodies might be negatively related to banana chilling tolerance. In conclusion, we have identified the MaXTH gene family and assessed cell wall re-modelling under LT stress. These results will be beneficial for banana breeding against stresses and enrich the cell wall-mediated resistance mechanism in plants to stresses.


Asunto(s)
Musa , Xilanos , Musa/genética , Temperatura , Genoma de Planta , Glucanos , Filogenia , Regulación de la Expresión Génica de las Plantas/genética
11.
Sci Bull (Beijing) ; 69(6): 784-791, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38246798

RESUMEN

Small RNAs (sRNAs), found extensively in plants, play an essential role in plant growth and development. Although various sRNA analysis tools have been developed for plants, the use of most of them depends on programming and command-line environments, which is a challenge for many wet-lab biologists. Furthermore, current sRNA analysis tools mostly focus on the analysis of certain type of sRNAs and are resource-intensive, normally demanding an immense amount of time and effort to learn the use of numerous tools or scripts and assemble them into a workable pipeline to get the final results. Here, we present sRNAminer, a powerful stand-alone toolkit with a user-friendly interface that integrates all common functions for the analysis of three major types of plant sRNAs: microRNAs (miRNAs), phased small interfering RNAs (phasiRNAs), and heterochromatic siRNAs (hc-siRNAs). We constructed a curated or "golden" set of MIRNA and PHAS loci, which was used to assess the performance of sRNAminer in comparison to other existing tools. The results showed that sRNAminer outperformed these tools in multiple aspects, highlighting its functionality. In addition, to enable an efficient evaluation of sRNA annotation results, we developed Integrative Genomics Viewer (IGV)-sRNA, a modified genome browser optimized from IGV and we incorporated it as a functional module in sRNAminer. IGV-sRNA can display a wealth of sRNA-specific features, enabling a more comprehensive understanding of sRNA data. sRNAminer and IGV-sRNA are both platform-independent software that can be run under all operating systems. They are now freely available at https://github.com/kli28/sRNAminer and https://gitee.com/CJchen/IGV-sRNA.


Asunto(s)
MicroARNs , MicroARNs/genética , ARN Interferente Pequeño/genética , Genómica , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
12.
Plant Biotechnol J ; 22(4): 819-832, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37966709

RESUMEN

MicroRNA482/2118 (miR482/2118) is a 22-nt miRNA superfamily, with conserved functions in disease resistance and plant development. It usually instigates the production of phased small interfering RNAs (phasiRNAs) from its targets to expand or reinforce its silencing effect. Using a new high-quality reference genome sequence and comprehensive small RNA profiling, we characterized a newly evolved regulatory pathway of miR482/2118 in litchi. In this pathway, miR482/2118 cleaved a novel noncoding trans-acting gene (LcTASL1) and triggered phasiRNAs to regulate the expression of gibberellin (GA) receptor gene GIBBERELLIN INSENSITIVE DWARF1 (GID1) in trans; another trans-acting gene LcTASL2, targeted by LcTASL1-derived phasiRNAs, produced phasiRNAs as well to target LcGID1 to reinforce the silencing effect of LcTASL1. We found this miR482/2118-TASL-GID1 pathway was likely involved in fruit development, especially the seed development in litchi. In vivo construction of the miR482a-TASL-GID1 pathway in Arabidopsis could lead to defects in flower and silique development, analogous to the phenotype of gid1 mutants. Finally, we found that a GA-responsive transcription factor, LcGAMYB33, could regulate LcMIR482/2118 as a feedback mechanism of the sRNA-silencing pathway. Our results deciphered a lineage-specifically evolved regulatory module of miR482/2118, demonstrating the high dynamics of miR482/2118 function in plants.


Asunto(s)
Arabidopsis , MicroARNs , ARN Interferente Pequeño/genética , Giberelinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Plantas/genética , Semillas/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , ARN de Planta/genética
13.
Mol Plant ; 16(11): 1733-1742, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37740491

RESUMEN

Since the official release of the stand-alone bioinformatics toolkit TBtools in 2020, its superior functionality in data analysis has been demonstrated by its widespread adoption by many thousands of users and references in more than 5000 academic articles. Now, TBtools is a commonly used tool in biological laboratories. Over the past 3 years, thanks to invaluable feedback and suggestions from numerous users, we have optimized and expanded the functionality of the toolkit, leading to the development of an upgraded version-TBtools-II. In this upgrade, we have incorporated over 100 new features, such as those for comparative genomics analysis, phylogenetic analysis, and data visualization. Meanwhile, to better meet the increasing needs of personalized data analysis, we have launched the plugin mode, which enables users to develop their own plugins and manage their selection, installation, and removal according to individual needs. To date, the plugin store has amassed over 50 plugins, with more than half of them being independently developed and contributed by TBtools users. These plugins offer a range of data analysis options including co-expression network analysis, single-cell data analysis, and bulked segregant analysis sequencing data analysis. Overall, TBtools is now transforming from a stand-alone software to a comprehensive bioinformatics platform of a vibrant and cooperative community in which users are also developers and contributors. By promoting the theme "one for all, all for one", we believe that TBtools-II will greatly benefit more biological researchers in this big-data era.


Asunto(s)
Biología Computacional , Programas Informáticos , Filogenia , Minería de Datos , Macrodatos
14.
Food Chem Toxicol ; 178: 113875, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37286028

RESUMEN

Environmental cadmium (Cd) exposure is a serious public health concern, as the kidney is the primary target for Cd exposure. The present study aimed to investigate the role and underlying mechanisms of nuclear factor erythroid-derived 2-like 2 (Nrf2) in renal fibrosis induced by chronic Cd exposure. Nrf2 knockout (Nrf2-KO) mice and their wild-type littermates (Nrf2-WT) were exposed to 100 or 200 ppm Cd in drinking water for up to 16 or 24 weeks. Following the Cd exposures, Nrf2-KO mice showed elevated urinary neutrophil gelatinase-associated lipocalin (NGAL) and BUN levels compared to Nrf2-WT mice. Masson's trichrome staining and expression of fibrosis-associated proteins revealed that more severe renal fibrosis occurred in Nrf2-KO than that in Nrf2-WT mice. Renal Cd content in the Nrf2-KO mice exposed to 200 ppm Cd was lower than that in Nrf2-WT mice, which might be a consequence of the severe renal fibrosis in the Nrf2-KO mice. Mechanistic studies showed that Nrf2-KO mice exhibited higher levels of oxidative damage, lower antioxidant levels, and more regulated cell death, apoptosis in particular, than those in Nrf2-WT mice caused by Cd exposure. In conclusion, Nrf2-KO mice were more prone to develop renal fibrosis induced by chronic Cd exposure, partially due to a weakened antioxidant, detoxification capacity and increased oxidative damage.


Asunto(s)
Cadmio , Enfermedades Renales , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Antioxidantes/metabolismo , Cadmio/toxicidad , Fibrosis/inducido químicamente , Enfermedades Renales/inducido químicamente , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
15.
Front Plant Sci ; 14: 1159223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123828

RESUMEN

Background: Pineapple is the only commercially grown fruit crop in the Bromeliaceae family and has significant agricultural, industrial, economic, and ornamental value. GRF (growth-regulating factor) proteins are important transcription factors that have evolved in seed plants (embryophytes). They contain two conserved domains, QLQ (Gln, Leu, Gln) and WRC (Trp, Arg, Cys), and regulate multiple aspects of plant growth and stress response, including floral organ development, leaf growth, and hormone responses. The GRF family has been characterized in a number of plant species, but little is known about this family in pineapple and other bromeliads. Main discoveries: We identified eight GRF transcription factor genes in pineapple, and phylogenetic analysis placed them into five subfamilies (I, III, IV, V, VI). Segmental duplication appeared to be the major contributor to expansion of the AcGRF family, and the family has undergone strong purifying selection during evolution. Relative to that of other gene families, the gene structure of the GRF family showed less conservation. Analysis of promoter cis-elements suggested that AcGRF genes are widely involved in plant growth and development. Transcriptome data and qRT-PCR results showed that, with the exception of AcGRF5, the AcGRFs were preferentially expressed in the early stage of floral organ development and AcGRF2 was strongly expressed in ovules. Gibberellin treatment significantly induced AcGRF7/8 expression, suggesting that these two genes may be involved in the molecular regulatory pathway by which gibberellin promotes pineapple fruit expansion. Conclusion: AcGRF proteins appear to play a role in the regulation of floral organ development and the response to gibberellin. The information reported here provides a foundation for further study of the functions of AcGRF genes and the traits they regulate.

16.
Small ; 19(18): e2207086, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36650993

RESUMEN

It is a good idea for efficient production of hydrogen to use ethanol oxidation reaction (EOR) in place of oxygen evolution reaction (OER) in water electrolysis process. Ni-based non-precious electrocatalysts are widely used in the conversion of ethanol to acetic acid. Here, different selenide heterostructures (NiCoSe, NiFeSe, and NiCuSe) are prepared in which Ni sites are regulated by transition metal. The valence state of Ni is NiCuSe < NiCoSe < NiFeSe in the three heterojunctions. NiCoSe shows the optimized charge distribution of Ni sites and outstanding catalytic activity. The effective modulations lead to optimized d-band center and facilitates both adsorption and desorption of reaction intermediates, which improves the kinetics of EOR. The results of this work prove that with appropriate designed catalyst it is possible to replace kinetically slow OER with faster EOR in water electrolysis to produce hydrogen.

18.
Plant Cell Rep ; 41(8): 1693-1706, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35789423

RESUMEN

KEY MESSAGE: Seventeen classical MaAGPs and 9 MbAGPs were identified and analyzed. MaAGP1/2/6/9/16/17, the antigens of JIM13 and LM2 antibodies are likely to be involved in banana chilling tolerance. Classical arabinogalactan proteins (AGPs) belong to glycosylphosphatidylinositol-anchored proteins, which are proved to be involved in signaling and cell wall metabolism upon stresses. However, rare information is available on the roles of classical AGPs in low temperature (LT) tolerance. Cultivation of banana in tropical and subtropical region is seriously threatened by LT stress. In the present study, 17 classical MaAGPs and nine MbAGPs in banana A and B genome were identified and characterized, respectively. Great diversity was present among different classical MaAGP/MbAGP members while five members (AGP3/6/11/13/14) showed 100% identity between these two gene families. We further investigated different responses of classical AGPs to LT between a chilling sensitive (CS) and tolerant (CT) banana cultivars. In addition, different changes in the temporal and spatial distribution of cell wall AGP components under LTs between these two cultivars were compared using immunofluorescence labeling. Seven classical MbAGPs were upregulated by LT(s) in the CT cultivar. Classical MaAGP4/6 was induced by LT(s) in both cultivars while MaAGP1/2/9/16/17 only in the CT cultivar. Moreover, these genes showed significantly higher transcription abundance in the CT cultivar than the CS one under LT(s) except classical MaAGP4. Similar results were observed with the epitopes of JIM13 and LM2 antibodies. The antigens of these antibodies and classical MaAGP1/2/6/9/16/17 might be related to LT tolerance of banana. These results provide additional information about plant classical AGPs and their involvement in LT tolerance, as well as their potential as candidate genes to be targeted when breeding CT banana.


Asunto(s)
Musa , Pared Celular/genética , Pared Celular/metabolismo , Frío , Musa/genética , Musa/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
19.
Microbiol Spectr ; 10(3): e0189121, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35446124

RESUMEN

Toxoplasma gondii (T. gondii) bradyzoites facilitate chronic infections that evade host immune response. Furthermore, reactivation in immunocompromised individuals causes severe toxoplasmosis. The presence of abundant granules containing the branched starch amylopectin is major characteristic of bradyzoites that is nearly absent from tachyzoites that drive acute disease. T. gondii genome encodes to potential Starch branching enzyme 1 (SBE1) that creates branching during amylopectin biosynthesis. However, the physiological function of the amylopectin in T. gondii remains unclear. In this study, we generated a SBE1 knockout parasites and revealed that deletion of SBE1 caused amylopectin synthesis defects while having no significant impact on the growth of tachyzoites under normal culture conditions in vitro as well as virulence and brain cyst formation. Nevertheless, SBE1 knockout decreased the influx of exogenous glucose and reduced tachyzoites proliferation in nutrition-deficient conditions. Deletion of SBE1 together with the α-amylase (α-AMY), responsible for starch digestion, abolished amylopectin production and attenuated virulence while restoring brain cyst formation. In addition, cysts with defective amylopectin metabolism showed abnormal morphology and were avirulent to mice. In conclusion, SBE1 is essential for the synthesis of amylopectin, which serves as energy storage during the development and reactivation of bradyzoites. IMPORTANCE Toxoplasmosis has become a global, serious public health problem due to the extensiveness of the host. There are great differences in the energy metabolism in the different stages of infection. The most typical difference is the abundant accumulation of amylopectin granules in bradyzoites, which is almost absent in tachyzoites. Until now, the physiological functions of amylopectin have not been clearly elucidated. We focused on starch branching enzyme 1 (SBE1) in the synthesis pathway to reveal the exact physiological significance of amylopectin. Our study clarified the role of SBE1 in the synthesis pathway and amylopectin in tachyzoites and bradyzoites, and demonstrated that amylopectin, as an important carbon source, was critical to parasites growth under an unfavorable environment and the reactivation of bradyzoites to tachyzoites. The findings obtained from our study provides a new avenue for the development of Toxoplasma vaccines and anti-chronic toxoplasmosis drugs.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Amilopectina , Proteínas Protozoarias , Toxoplasma , Toxoplasmosis , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Amilopectina/biosíntesis , Animales , Ratones , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasma/genética , Virulencia
20.
Nat Genet ; 54(1): 73-83, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980919

RESUMEN

Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar 'Feizixiao' was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.


Asunto(s)
Domesticación , Genoma de Planta , Litchi/genética , China , Productos Agrícolas/genética , Evolución Molecular , Flores/genética , Haplotipos , Heterocigoto , Litchi/crecimiento & desarrollo , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...