Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 22(1): 136, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867239

RESUMEN

BACKGROUND: Most tail-anchored (TA) membrane proteins are delivered to the endoplasmic reticulum through a conserved posttranslational pathway. Although core mechanisms underlying the targeting and insertion of TA proteins are well established in eukaryotes, their role in mediating TA protein biogenesis in plants remains unclear. We reported the crystal structures of algal arsenite transporter 1 (ArsA1), which possesses an approximately 80-kDa monomeric architecture and carries chloroplast-localized TA proteins. However, the mechanistic basis of ArsA2, a Get3 (guided entry of TA proteins 3) homolog in plants, for TA recognition remains unknown. RESULTS: Here, for the first time, we present the crystal structures of the diatom Pt-Get3a that forms a distinct ellipsoid-shaped tetramer in the open (nucleotide-bound) state through crystal packing. Pulldown assay results revealed that only tetrameric Pt-Get3a can bind to TA proteins. The lack of the conserved zinc-coordination CXXC motif in Pt-Get3a potentially leads to the spontaneous formation of a distinct parallelogram-shaped dimeric conformation in solution, suggesting a new dimer state for subsequent tetramerization upon TA targeting. Pt-Get3a nonspecifically binds to different subsets of TA substrates due to the lower hydrophobicity of its α-helical subdomain, which is implicated in TA recognition. CONCLUSIONS: Our study provides new insights into the mechanisms underlying TA protein shielding by tetrameric Get3 during targeting to the diatom's cell membrane.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Multimerización de Proteína
2.
Viruses ; 14(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35336958

RESUMEN

The feedback strategy, or controlled exposure of pig herd to the porcine epidemic diarrhea virus (PEDV), significantly decreased losses during a severe outbreak in late 2013 in Taiwan. However, some pig farms still suffered from recurrent outbreaks. To evaluate the association between antibody titers and clinical manifestations, sera and colostra were analyzed from one pig farm that employed the feedback strategy. Furthermore, spike (S) gene full sequences from six positive samples of two farms with and without using feedback were compared to investigate the evolution of PEDV variants circulating in pig herds. The results in this study showed that high PEDV antibody titers do not correlate with the high rate of protection from PEDV infection. In addition, repeated feedback generated the emergence of PEDV variants with unique substitutions of N537S and Y561H in the COE domain and S769F in the SS6 epitopes. These mutations indicated the pathogenetic evolution of PEDV strains existing in the cycle of the feedback method. A very strict biosecurity practice to block the routes of pathogen transfer should be followed to achieve successful control of PEDV infections in pig herds.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Epítopos/genética , Granjas , Retroalimentación , Mutación , Filogenia , Virus de la Diarrea Epidémica Porcina/genética , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos
3.
Artículo en Inglés | MEDLINE | ID: mdl-34211622

RESUMEN

Microwave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500-1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500-1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500-1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities.

4.
Front Microbiol ; 11: 573907, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193181

RESUMEN

Thraustochytrids are heterotrophic fungus-like protists that can dissolve organic matters with enzymes. Four strains, AP45, ASP1, ASP2, and ASP4, were isolated from the coastal water of Taiwan, and respectively identified as Aurantiochytrium sp., Schizochytrium sp., Parietichytrium sp., and Botryochytrium sp. based on 18S rRNA sequences. Transcriptome datasets of these four strains at days 3-5 were generated using Next Generation Sequencing technology, and screened for enzymes with potential industrial applications. Functional annotations based on KEGG database suggest that many unigenes of all four strains were related to the pathways of industrial enzymes. Most of all four strains contained homologous genes for 15 out of the 17 targeted enzymes, and had extra- and/or intra-cellular enzymatic activities, including urease, asparaginase, lipase, glucosidase, alkaline phosphatase and protease. Complete amino sequences of the first-time identified L-asparaginase and phytase in thraustochytrids were retrieved, and respectively categorized to the Type I and BPPhy families based on phylogenetic relationships, protein structural modeling and active sites. Milligram quantities of highly purified, soluble protein of urease and L-asparaginase were successfully harvested and analyzed for recombinant enzymatic activities. These analytical results highlight the diverse enzymes for wide-range applications in thraustochytrids.

5.
Plant Cell Physiol ; 60(10): 2167-2179, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31198969

RESUMEN

Monodehydroascorbate reductase (MDAR; EC 1.6.5.4) is one of the key enzymes in the conversion of oxidized ascorbate (AsA) back to reduced AsA in plants. This study investigated the role of MDAR in the tolerance of Chlamydomonas reinhardtii P.A. Dangeard to photooxidative stress by overexpression and downregulation of the CrMDAR1 gene. For overexpression of CrMDAR1 driven by a HSP70A:RBCS2 fusion promoter, the cells survived under very high-intensity light stress (VHL, 1,800 µmol�m-2�s-1), while the survival of CC-400 and vector only control (vector without insert) cells decreased for 1.5 h under VHL stress. VHL increased lipid peroxidation of CC-400 but did not alter lipid peroxidation in CrMDAR1 overexpression lines. Additionally, overexpression of CrMDAR1 showed an increase in viability, CrMDAR1 transcript abundance, enzyme activity and the AsA: dehydroascorbate (DHA) ratio. Next, MDAR was downregulated to examine the essential role of MDAR under high light condition (HL, 1,400 µmol�m-2�s-1). The CrMDAR1 knockdown amiRNA line exhibited a low MDAR transcript abundance and enzyme activity and the survival decreased under HL conditions. Additionally, HL illumination decreased CrMDAR1 transcript abundance, enzyme activity and AsA:DHA ratio of CrMDAR1-downregulation amiRNA lines. Methyl viologen (an O2�- generator), H2O2 and NaCl treatment could induce an increase in CrMDAR1 transcript level. It represents reactive oxygen species are one of the factor inducing CrMDAR1 gene expression. In conclusion, MDAR plays a role in the tolerance of Chlamydomonas cells to photooxidative stress.


Asunto(s)
Ácido Ascórbico/metabolismo , Chlamydomonas reinhardtii/enzimología , NADH NADPH Oxidorreductasas/metabolismo , Estrés Fisiológico , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiología , Chlamydomonas reinhardtii/efectos de la radiación , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/farmacología , Luz , Peroxidación de Lípido , NADH NADPH Oxidorreductasas/genética , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Cloruro de Sodio/farmacología
6.
Plant J ; 99(1): 128-143, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30891827

RESUMEN

In mammals and yeast, tail-anchored (TA) membrane proteins destined for the post-translational pathway are safely delivered to the endoplasmic reticulum (ER) membrane by a well-known targeting factor, TRC40/Get3. In contrast, the underlying mechanism for translocation of TA proteins in plants remains obscure. How this unique eukaryotic membrane-trafficking system correctly distinguishes different subsets of TA proteins destined for various organelles, including mitochondria, chloroplasts and the ER, is a key question of long standing. Here, we present crystal structures of algal ArsA1 (the Get3 homolog) in a distinct nucleotide-free open state and bound to adenylyl-imidodiphosphate. This approximately 80-kDa protein possesses a monomeric architecture, with two ATPase domains in a single polypeptide chain. It is capable of binding chloroplast (TOC34 and TOC159) and mitochondrial (TOM7) TA proteins based on features of its transmembrane domain as well as the regions immediately before and after the transmembrane domain. Several helices located above the TA-binding groove comprise the interlocking hook-like motif implicated by mutational analyses in TA substrate recognition. Our data provide insights into the molecular basis of the highly specific selectivity of interactions of algal ArsA1 with the correct sets of TA substrates before membrane targeting in plant cells.


Asunto(s)
Cloroplastos/metabolismo , Proteínas de la Membrana/metabolismo , Retículo Endoplásmico/metabolismo , Unión Proteica , Transporte de Proteínas
7.
Sci Rep ; 7: 46022, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28382961

RESUMEN

Although the mechanisms underlying selective targeting of tail-anchored (TA) membrane proteins are well established in mammalian and yeast cells, little is known about their role in mediating intracellular membrane trafficking in plant cells. However, a recent study suggested that, in green algae, arsenite transporters located in the cytosol (ArsA1 and ArsA2) control the insertion of TA proteins into the membrane-bound organelles. In the present work, we overproduced and purified these hydrophilic proteins to near homogeneity. The analysis of their catalytic properties clearly demonstrates that C. reinhardtii ArsA proteins exhibit oxyanion-independent ATPase activity, as neither arsenite nor antimonite showed strong effects. Co-expression of ArsA proteins with TA-transmembrane regions showed not only that the former interact with the latter, but that ArsA1 does not share the same ligand specificity as ArsA2. Together with a structural model and molecular dynamics simulations, we propose that C. reinhadtii ArsA proteins are not arsenite transporters, but a TA-protein targeting factor. Further, we propose that ArsA targeting specificity is achieved at the ligand level, with ArsA1 mainly carrying TA-proteins to the chloroplast, while ArsA2 to the endoplasmic reticulum.


Asunto(s)
Arsenitos/metabolismo , Chlamydomonas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , ATPasas Transportadoras de Arsenitos/metabolismo , Modelos Moleculares , Alineación de Secuencia , Especificidad por Sustrato
8.
J Biol Chem ; 288(17): 11689-704, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23430247

RESUMEN

Recent studies indicate that caspase-2 is involved in the early stages of apoptosis, particularly before the occurrence of mitochondrial damage. Here we report the important role of the coenzyme Q10 (CoQ10) on the activity of caspase-2 upstream of mitochondria in ethanol (EtOH)-treated corneal fibroblasts. After EtOH exposure, cells produce excessive reactive oxygen species formation, p53 expression, and most importantly, caspase-2 activation. After the activation of the caspase-2, the cells exhibited hallmarks of apoptotic pathway, such as mitochondrial damage and translocation of Bax and cytochrome c, which were then followed by caspase-3 activation. By pretreating the cells with a cell-permeable, biotinylated pan-caspase inhibitor, we identified caspase-2 as an initiator caspase in EtOH-treated corneal fibroblasts. Loss of caspase-2 inhibited EtOH-induced apoptosis. We further found that caspase-2 acts upstream of mitochondria to mediate EtOH-induced apoptosis. The loss of caspase-2 significantly inhibited EtOH-induced mitochondrial dysfunction, Bax translocation, and cytochrome c release from mitochondria. The pretreatment of CoQ10 prevented EtOH-induced caspase-2 activation and mitochondria-mediated apoptosis. Our data demonstrated that by blocking caspase-2 activity, CoQ10 can protect the cells from mitochondrial membrane change, apoptotic protein translocation, and apoptosis. Taken together, EtOH-induced mitochondria-mediated apoptosis is initiated by caspase-2 activation, which is regulated by CoQ10.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasa 2/metabolismo , Córnea/metabolismo , Etanol/farmacología , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Solventes/farmacología , Ubiquinona/análogos & derivados , Animales , Caspasa 3/biosíntesis , Bovinos , Células Cultivadas , Córnea/citología , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Regulación de la Expresión Génica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteína p53 Supresora de Tumor/biosíntesis , Ubiquinona/metabolismo , Proteína X Asociada a bcl-2/biosíntesis
9.
PLoS One ; 6(4): e19111, 2011 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-21556371

RESUMEN

Dilute ethanol (EtOH) is a widely used agent to remove the corneal epithelium during the modern refractive surgery. The application of EtOH may cause the underlying corneal fibroblasts to undergo apoptosis. This study was designed to investigate the protective effect and potential mechanism of the respiratory chain coenzyme Q(10) (CoQ(10)), an electron transporter of the mitochondrial respiratory chain and a ubiquitous free radical scavenger, against EtOH-induced apoptosis of corneal fibroblasts. Corneal fibroblasts were pretreated with CoQ(10) (10 µM) for 2 h, followed by exposure to different concentrations of EtOH (0.4, 2, 4, and 20%) for 20 s. After indicated incubation period (2-12 h), MTT assay was used to examine cell viability. Treated cells were further assessed by flow cytometry to identify apoptosis. Reactive oxygen species (ROS) and the change in mitochondrial membrane potential were assessed using dichlorodihydrofluorescein diacetate/2',7'-dichlorofluorescein (DCFH-DA/DCF) assays and flow-cytometric analysis of JC-1 staining, respectively. The activity and expression of caspases 2, 3, 8, and 9 were evaluated with a colorimetric assay and western blot analysis. We found that EtOH treatment significantly decreased the viability of corneal fibroblasts characterized by a higher percentage of apoptotic cells. CoQ(10) could antagonize the apoptosis inducing effect of EtOH. The inhibition of cell apoptosis by CoQ(10) was significant at 8 and 12 h after EtOH exposure. In EtOH-exposed corneal fibroblasts, CoQ(10) pretreatment significantly reduced mitochondrial depolarization and ROS production at 30, 60, 90, and 120 min and inhibited the activation and expression of caspases 2 and 3 at 2 h after EtOH exposure. In summary, pretreatment with CoQ(10) can inhibit mitochondrial depolarization, caspase activation, and cell apoptosis. These findings support the proposition that CoQ(10) plays an antiapoptotic role in corneal fibroblasts after ethanol exposure.


Asunto(s)
Apoptosis/efectos de los fármacos , Córnea/efectos de los fármacos , Etanol/farmacología , Ubiquinona/análogos & derivados , Colorimetría , Córnea/citología , Córnea/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Citometría de Flujo , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...