Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Wiley Interdiscip Rev Dev Biol ; 10(1): e392, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32909689

RESUMEN

Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/metabolismo , Proteoma/metabolismo , Coloración y Etiquetado/métodos , Animales , Humanos , Proteoma/análisis
2.
Nat Neurosci ; 23(12): 1637-1643, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32929244

RESUMEN

Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Neuronas/ultraestructura , Animales , Axones/fisiología , Axones/ultraestructura , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Corteza Cerebral/ultraestructura , Dendritas/fisiología , Dendritas/ultraestructura , Drosophila melanogaster , Femenino , Holografía , Imagenología Tridimensional , Aprendizaje Automático , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Músculo Esquelético/inervación , Músculo Esquelético/ultraestructura , Nanotecnología , Redes Neurales de la Computación , Células Piramidales/ultraestructura , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Tomografía
3.
G3 (Bethesda) ; 10(2): 489-494, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31822517

RESUMEN

CRISPR-Cas9 is a powerful genome editing technology in which a single guide RNA (sgRNA) confers target site specificity to achieve Cas9-mediated genome editing. Numerous sgRNA design tools have been developed based on reference genomes for humans and model organisms. However, existing resources are not optimal as genetic mutations or single nucleotide polymorphisms (SNPs) within the targeting region affect the efficiency of CRISPR-based approaches by interfering with guide-target complementarity. To facilitate identification of sgRNAs (1) in non-reference genomes, (2) across varying genetic backgrounds, or (3) for specific targeting of SNP-containing alleles, for example, disease relevant mutations, we developed a web tool, SNP-CRISPR (https://www.flyrnai.org/tools/snp_crispr/). SNP-CRISPR can be used to design sgRNAs based on public variant data sets or user-identified variants. In addition, the tool computes efficiency and specificity scores for sgRNA designs targeting both the variant and the reference. Moreover, SNP-CRISPR provides the option to upload multiple SNPs and target single or multiple nearby base changes simultaneously with a single sgRNA design. Given these capabilities, SNP-CRISPR has a wide range of potential research applications in model systems and for design of sgRNAs for disease-associated variant correction.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Polimorfismo de Nucleótido Simple , ARN Guía de Kinetoplastida , Animales , Dípteros , Humanos , Internet , Ratones , Ratas , Programas Informáticos , Pez Cebra
4.
Proc Natl Acad Sci U S A ; 116(52): 26591-26598, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31843907

RESUMEN

Translationally controlled tumor protein (TCTP) is a highly conserved protein functioning in multiple cellular processes, ranging from growth to immune responses. To explore the role of TCTP in tissue maintenance and regeneration, we employed the adult Drosophila midgut, where multiple signaling pathways interact to precisely regulate stem cell division for tissue homeostasis. Tctp levels were significantly increased in stem cells and enteroblasts upon tissue damage or activation of the Hippo pathway that promotes regeneration of intestinal epithelium. Stem cells with reduced Tctp levels failed to proliferate during normal tissue homeostasis and regeneration. Mechanistically, Tctp forms a complex with multiple proteins involved in translation and genetically interacts with ribosomal subunits. In addition, Tctp increases both Akt1 protein abundance and phosphorylation in vivo. Altogether, Tctp regulates stem cell proliferation by interacting with key growth regulatory signaling pathways and the translation process in vivo.

5.
Cell Metab ; 27(5): 1040-1054.e8, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606597

RESUMEN

Nutrient deprivation induces autophagy through inhibiting TORC1 activity. We describe a novel mechanism in Drosophila by which TORC1 regulates RNA processing of Atg transcripts and alters ATG protein levels and activities via the cleavage and polyadenylation (CPA) complex. We show that TORC1 signaling inhibits CDK8 and DOA kinases, which directly phosphorylate CPSF6, a component of the CPA complex. These phosphorylation events regulate CPSF6 localization, RNA binding, and starvation-induced alternative RNA processing of transcripts involved in autophagy, nutrient, and energy metabolism, thereby controlling autophagosome formation and metabolism. Similarly, we find that mammalian CDK8 and CLK2, a DOA ortholog, phosphorylate CPSF6 to regulate autophagy and metabolic changes upon starvation, revealing an evolutionarily conserved mechanism linking TORC1 signaling with RNA processing, autophagy, and metabolism.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Factores de Transcripción/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Animales , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Metabolismo Energético/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Células MCF-7 , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética
6.
Artículo en Inglés | MEDLINE | ID: mdl-28387482

RESUMEN

Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins with biotin. The biotinylated endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we describe and compare current methods of proximity labeling as well as their applications. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. WIREs Dev Biol 2017, 6:e272. doi: 10.1002/wdev.272 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Marcaje Isotópico/métodos , Proteoma/análisis , Proteómica/métodos , Animales , Humanos
7.
Proc Natl Acad Sci U S A ; 112(39): 12093-8, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26362788

RESUMEN

Characterization of the proteome of organelles and subcellular domains is essential for understanding cellular organization and identifying protein complexes as well as networks of protein interactions. We established a proteomic mapping platform in live Drosophila tissues using an engineered ascorbate peroxidase (APEX). Upon activation, the APEX enzyme catalyzes the biotinylation of neighboring endogenous proteins that can then be isolated and identified by mass spectrometry. We demonstrate that APEX labeling functions effectively in multiple fly tissues for different subcellular compartments and maps the mitochondrial matrix proteome of Drosophila muscle to demonstrate the power of APEX for characterizing subcellular proteomes in live cells. Further, we generate "MitoMax," a database that provides an inventory of Drosophila mitochondrial proteins with subcompartmental annotation. Altogether, APEX labeling in live Drosophila tissues provides an opportunity to characterize the organelle proteome of specific cell types in different physiological conditions.


Asunto(s)
Ascorbato Peroxidasas/genética , Bases de Datos de Proteínas , Drosophila/metabolismo , Proteómica/métodos , Coloración y Etiquetado/métodos , Animales , Biología Computacional , Drosophila/genética , Ingeniería Genética/métodos
8.
Proc Natl Acad Sci U S A ; 109(2): 484-9, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22190496

RESUMEN

Homeostatic mechanisms can eliminate abnormal cells to prevent diseases such as cancer. However, the underlying mechanisms of this surveillance are poorly understood. Here we investigated how clones of cells mutant for the neoplastic tumor suppressor gene scribble (scrib) are eliminated from Drosophila imaginal discs. When all cells in imaginal discs are mutant for scrib, they hyperactivate the Hippo pathway effector Yorkie (Yki), which drives growth of the discs into large neoplastic masses. Strikingly, when discs also contain normal cells, the scrib(-) cells do not overproliferate and eventually undergo apoptosis through JNK-dependent mechanisms. However, induction of apoptosis does not explain how scrib(-) cells are prevented from overproliferating. We report that cell competition between scrib(-) and wild-type cells prevents hyperproliferation by suppressing Yki activity in scrib(-) cells. Suppressing Yki activation is critical for scrib(-) clone elimination by cell competition, and experimental elevation of Yki activity in scrib(-) cells is sufficient to fuel their neoplastic growth. Thus, cell competition acts as a tumor-suppressing mechanism by regulating the Hippo pathway in scrib(-) cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Drosophila , Proteínas de Drosophila/genética , Genotipo , Discos Imaginales/citología , Discos Imaginales/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Señalizadoras YAP
9.
Proc Natl Acad Sci U S A ; 107(36): 15810-5, 2010 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-20798049

RESUMEN

Defects in apical-basal cell polarity and abnormal expression of cell polarity determinants are often associated with cancer in vertebrates. In Drosophila, abnormal expression of apical-basal determinants can cause neoplastic phenotypes, including loss of cell polarity and overproliferation. However, the pathways through which apical-basal polarity determinants affect growth are poorly understood. Here, we investigated the mechanism by which the apical determinant Crumbs (Crb) affects growth in Drosophila imaginal discs. Overexpression of Crb causes severe overproliferation, and we found that loss of Crb similarly results in overgrowth of imaginal discs. Crb gain and loss of function caused defects in Hippo signaling, a key signaling pathway that controls tissue growth in Drosophila and mammals. Manipulation of Crb levels caused the up-regulation of Hippo target genes, genetically interacted with known Hippo pathway components, and required Yorkie, a transcriptional coactivator that acts downstream in the Hippo pathway, for target gene induction and overgrowth. Interestingly, Crb regulates growth and cell polarity through different motifs in its intracellular domain. A juxtamembrane FERM domain-binding motif is responsible for growth regulation and induction of Hippo target gene expression, whereas Crb uses a PDZ-binding motif to form a complex with other polarity factors. The Hippo pathway component Expanded, an apically localized adaptor protein, is mislocalized in both crb mutant cells and Crb overexpressing tissues, whereas the other Hippo pathway components, Fat and Merlin, are unaffected. Taken together, our data show that Crb regulates growth through Hippo signaling, and thus identify Crb as a previously undescribed upstream input into the Hippo pathway.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Proliferación Celular , Drosophila
10.
Curr Biol ; 16(21): 2090-100, 2006 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-16996265

RESUMEN

BACKGROUND: The Hippo tumor-suppressor pathway has emerged as a key signaling pathway that controls tissue size in Drosophila. Merlin, the Drosophila homolog of the human Neurofibromatosis type-2 (NF2) tumor-suppressor gene, and the related protein Expanded are the most upstream components of the Hippo pathway identified so far. However, components acting upstream of Expanded and Merlin, such as transmembrane receptors, have not yet been identified. RESULTS: Here, we report that the protocadherin Fat acts as an upstream component in the Hippo pathway. Fat is a known tumor-suppressor gene in Drosophila, and fat mutants have severely overgrown imaginal discs. We found that the overgrowth phenotypes of fat mutants are similar to those of mutants in Hippo pathway components: fat mutant cells continued to proliferate after wild-type cells stopped proliferating, and fat mutant cells deregulated Hippo target genes such as cyclin E and diap1. Fat acts genetically and biochemically upstream of other Hippo pathway components such as Expanded, the Hippo and Warts kinases, and the transcriptional coactivator Yorkie. Fat is required for the stability of Expanded and its localization to the plasma membrane. In contrast, Fat is not required for Merlin localization, and Fat and Merlin act in parallel in growth regulation. CONCLUSIONS: Taken together, our data identify a cell-surface molecule that may act as a receptor of the Hippo signaling pathway.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Transducción de Señal , Animales , Cadherinas/genética , Cadherinas/fisiología , Moléculas de Adhesión Celular/genética , Proliferación Celular , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ojo/embriología , Ojo/ultraestructura , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/metabolismo , Neurofibromina 2/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Alas de Animales/anatomía & histología , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...