Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37259427

RESUMEN

Oral delivery has become the route of choice among all other types of drug administrations. However, typical chronic disease drugs are often poorly water-soluble, have low dissolution rates, and undergo first-pass metabolism, ultimately leading to low bioavailability and lack of efficacy. The lipid-based formulation offers tremendous benefits of using versatile excipients and has great compatibility with all types of dosage forms. Self-microemulsifying drug delivery system (SMEDDS) promotes drug self-emulsification in a combination of oil, surfactant, and co-surfactant, thereby facilitating better drug solubility and absorption. The feasible preparation of SMEDDS creates a promising strategy to improve the drawbacks of lipophilic drugs administered orally. Selecting a decent mixing among these components is, therefore, of importance for successful SMEDDS. Quality by Design (QbD) brings a systematic approach to drug development, and it offers promise to significantly improve the manufacturing quality performance of SMEDDS. Furthermore, it could be benefited efficiently by conducting pre-formulation studies integrated with the statistical design of experiment (DoE). In this review, we highlight the recent findings for the development of microemulsions and SMEDDS by using DoE methods to optimize the formulations for drugs in different excipients with controllable ratios. A brief overview of DoE concepts is discussed, along with its technical benefits in improving SMEDDS formulations.

2.
J Pharm Sci ; 112(3): 740-750, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36170906

RESUMEN

Liposomes have been used to improve therapeutic efficacy of drugs by increasing their bioavailability and altering biodistribution. The loading capacity of small molecules in liposomes remains a critical issue. Besides, the manufacturing process of liposomes requires multi-step procedures which hinders the clinical development. In this study, we developed a promising lipid-based nanocarriers (LN) delivery system for hydrophilic charged compounds using doxycycline (Doxy) as a model drug. This Doxy-loaded lipid nanocarrier (LN-Doxy) was fabricated by microfluidic technology. Design of experiments (DoE) was constructed to outline the interactions among the critical attributes of formulation, the parameters of microfluidic systems and excipient compositions. Response surface methodology (RSM) was furthered used for the optimization of LN-Doxy formulation. The LN-Doxy developed in this study showed high drug to lipid ratio and uniform distribution of particle size. Compared to Doxy solution, this LN-Doxy has reduced in vitro cellular toxicity and significant therapeutic efficacy which was verified in a peritonitis animal model. These results show the feasibility of using microfluidic technology combined with QbD approach to develop the LN formulation with high loading efficiency for ionizable hydrophilic drugs.


Asunto(s)
Doxiciclina , Liposomas , Animales , Doxiciclina/uso terapéutico , Microfluídica/métodos , Distribución Tisular , Lípidos , Tamaño de la Partícula
3.
Biomedicines ; 10(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35885039

RESUMEN

Small molecules and biologics are the two major categories of active pharmaceutical ingredients (APIs) commonly used for disease management [...].

4.
Biomedicines ; 10(6)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35740280

RESUMEN

Doxorubicin (Dox) is a widely known chemotherapeutic drug that has been encapsulated into liposomes for clinical use, such as Doxil® and Myocet®. Both of these are prepared via remote loading methods, which require multistep procedures. Additionally, their antitumor efficacy is hindered due to the poor drug release from PEGylated liposomes in the tumor microenvironment. In this study, we aimed to develop doxorubicin-loaded lipid-based nanocarriers (LNC-Dox) based on electrostatic interaction using microfluidic technology. The resulting LNC-Dox showed high loading capacity, with a drug-to-lipid ratio (D/L ratio) greater than 0.2, and high efficacy of drug release in an acidic environment. Different lipid compositions were selected based on critical packing parameters and further studied to outline their effects on the physicochemical characteristics of LNC-Dox. Design of experiments was implemented for formulation optimization. The optimized LNC-Dox showed preferred release in acidic environments and better therapeutic efficacy compared to PEGylated liposomal Dox in vivo. Thus, this study provides a feasible approach to efficiently encapsulate doxorubicin into lipid-based nanocarriers fabricated by microfluidic rapid mixing.

5.
Pharmaceutics ; 14(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35335854

RESUMEN

Due to the increasing rate of drug resistance in Candida spp., higher doses of antifungal agents are being used resulting in toxicity. Drug delivery systems have been shown to provide an effective approach to enhance the efficacy and reduce the toxicity of antifungal agents. Oleic acid was revealed to effectively inhibit biofilm formation, hence reducing the virulence of Candida albicans. In this study, oleic acid-based self micro-emulsifying delivery systems (OA-SMEDDS) were developed for delivering clotrimazole (CLT). Based on the pseudo-ternary phase diagram and loading capacity test, the optimal ratio of OA-SMEDDS with CLT was selected. CLT-loaded OA-SMEDDS not only bears a higher drug loading capacity but also maintains good storage stability. The minimum inhibitory concentration (MIC50) of CLT-loaded OA-SMEDDS (0.01 µg/mL) in Candida albicans was significantly lower than that of CLT dissolved in DMSO (0.04 µg/mL). Moreover, we showed CLT-loaded OA-SMEDDS could effectively prevent biofilm formation and destroy the intact biofilm structure of Candida albicans. Furthermore, a CLT-loaded OA-SMEDDS gel was developed and evaluated for its antifungal properties. Disk diffusion assay indicated that both CLT-loaded OA-SMEDDS and CLT-loaded OA-SMEDDS gels were more effective than commercially available products in inhibiting the wild-type and drug-resistant species of Candida.

6.
Biomedicines ; 9(8)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34440131

RESUMEN

The altered expression of chloride intracellular channel 4 (CLIC4) was reported to correlate with tumor progression. Previously, we have shown that the reduced cellular invasion induced by photodynamic therapy (PDT) is associated with suppression of CLIC4 expression in PDT-treated cells. Herein, we attempted to decipher the regulatory mechanisms involved in PDT-mediated CLIC4 suppression in A375 and MDA-MB-231 cells in vitro. We found that PDT can increase the expression and enzymatic activity of DNA methyltransferase 1 (DNMT1). Bisulfite sequencing PCR further revealed that PDT can induce hypermethylation in the CLIC4 promoter region. Silencing DNMT1 rescues the PDT-induced CLIC4 suppression and inhibits hypermethylation in its promoter. Furthermore, we found tumor suppressor p53 involves in the increased DNMT1 expression of PDT-treated cells. Finally, by comparing CLIC4 expression in lung malignant cells and normal lung fibroblasts, the extent of methylation in CLIC4 promoter was found to be inversely proportional to its expression. Taken together, our results indicate that CLIC4 suppression induced by PDT is modulated by DNMT1-mediated hypermethylation and depends on the status of p53, which provides a possible mechanistic basis for regulating CLIC4 expression in tumorigenesis.

7.
Pharmaceutics ; 12(4)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252313

RESUMEN

Neurofibromatosis type 1 (NF1) is an inherited neurological disorder. Approximately 5-13% of NF1 patients may develop a malignant peripheral nerve sheath tumor (MPNST), which is a neurofibrosarcoma transformed from the plexiform neurofibroma or schwannoma. Given the large size and easy metastasis of MPNST, it remains difficult to be cured by either surgical or conventional chemotherapy. In this study, we investigated the possibility of combining photodynamic therapy (PDT) and chemotherapy to treat MPNST by using a dual-effect liposome (named as PL-cDDP-Ce6), in which a chemotherapeutic agent, cisplatin (cDDP), and photosensitizer, chlorine e6 (Ce6) were encapsulated in the same carrier. The cytotoxic effect of PL-cDDP-Ce6 against MPNST cells was significantly higher than cells treated with liposomal cDDP or Ce6 alone or in combination after light irradiation. Treatment with the dual-effect liposomes in mice bearing xenograft MPNST tumor reveals a significant increase in survival rate compared to those treated with liposomal cDDP and Ce6 in combination. Moreover, there is no weight loss or derangements of serum biochemistry. In conclusion, this study demonstrates the clinical potential and advantage of using this liposomal drug for the treatment of MPNST.

8.
Med Mycol ; 58(4): 521-529, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31281934

RESUMEN

Fungal infections, particularly Candida species, have increased worldwide and caused high morbidity and mortality rates. The toxicity and development of resistance in present antifungal drugs justify the need of new drugs with different mechanism of action. BMVC-12C-P, a carbazole-type compound, has been found to dysfunction mitochondria. BMVC-12C-P displayed the strongest antifungal activities among all of the BMVC derivatives. The minimal inhibitory concentration (MIC) of BMVC-12C-P against Candida species ranged from 1 to 2 µg/ml. Fluconazole-resistant clinical isolates of Candida species were highly susceptible to BMVC-12C-P. The potent fungicidal activity of BMVC-12C-P relates to its impairing mitochondrial function. Furthermore, we found that the hyphae growth and biofilm formation were suppressed in C. albicans survived from BMVC-12C-P treatment. This study demonstrates the potential of BMVC-12C-P as an antifungal agent for treating Candida infections.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Carbazoles/química , Carbazoles/farmacología , Farmacorresistencia Fúngica , Compuestos de Piridinio/química , Compuestos de Piridinio/farmacología , Antifúngicos/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida/clasificación , Fluconazol/farmacología , Hifa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Mitocondrias/efectos de los fármacos , Mitocondrias/patología
9.
Pharmaceutics ; 11(11)2019 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-31744218

RESUMEN

Long-circulating PEG-modified liposome has been shown to improve pharmacokinetic properties and reduce systemic toxicity in cancer treatment. However, drug bioavailability from liposome remains a major challenge to the improvement of its therapeutic efficacy. Previously, we designed a PEGylated dual-effect liposome (named as PL-Dox-Ce6) with chlorin e6 incorporated in the lipid bilayer and Doxorubicin encapsulated in the interior. In this study, another dual-effect liposome with cisplatin encapsulated in the interior was further developed. The pharmacokinetics of these two dual-effect liposomes were studied in tumor-bearing mice. Based on the kinetic data of tumor and plasma, light irradiation was applied onto the tumors at different time points after drug administration to compare the therapeutic efficacy. We demonstrated that a single dose of the dual-effect liposomes combined with two doses of light irradiation can completely eradicate over 90% of the tumor in mice alone with significant survival rate and no toxicity. Thus, this study established a platform that utilizes the dual-effect liposome which combines photodynamic therapy and chemotherapy to improve the therapeutic outcomes of tumors.

10.
Int J Mol Sci ; 19(9)2018 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201851

RESUMEN

The differential transcriptional expression of CLIC4 between tumor cells and the surrounding stroma during cancer progression has been suggested to have a tumor-promoting effect. However, little is known about the transcriptional regulation of CLIC4. To better understand how this gene is regulated, the promoter region of CLIC4 was analyzed. We found that a high GC content near the transcriptional start site (TSS) might form an alternative G-quadruplex (G4) structure. Nuclear magnetic resonance spectroscopy (NMR) confirmed their formation in vitro. The reporter assay showed that one of the G4 structures exerted a regulatory role in gene transcription. When the G4-forming sequence was mutated to disrupt the G4 structure, the transcription activity dropped. To examine whether this G4 structure actually has an influence on gene transcription in the chromosome, we utilized the CRISPR/Cas9 system to edit the G4-forming sequence within the CLIC4 promoter in the cell genome. The pop-in/pop-out strategy was adopted to isolate the precisely-edited A375 cell clone. In CRISPR-modified A375 cell clones whose G4 was disrupted, there was a decrease in the endogenous CLIC4 messenger RNA (mRNA) expression level. In conclusion, we found that the G4 structure in the CLIC4 promoter might play an important role in regulating the level of transcription.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/genética , Regulación hacia Abajo , Regiones Promotoras Genéticas , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico
11.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30200473

RESUMEN

Previously, we showed that chitosan could augment the biocidal efficacy mediated by photodynamic treatment against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. In this study, we showed that the antimicrobial action of chitosan in augmenting photodynamic inactivation (PDI) is related to the increase in cell surface destruction. The microbial cell surfaces exhibit severe irregular shapes after PDI in the presence of chitosan as demonstrated by transmitted electron microscopy. Furthermore, increases in the concentration or incubation time of chitosan significantly reduced the amounts of photosensitizer toluidine blue O required, indicating that chitosan could be an augmenting agent used in conjunction with PDI against S. aureus, P. aeruginosa, and C. albicans. A prolonged lag phase was found in microbial cells that survived to PDI, in which chitosan acted to completely eradicate the cells. Once the exponential log stage and cell rebuild began, their cellular functions from PDI-induced damage returned and the increased cytotoxic effect of chitosan disappeared. Together, our results suggest that chitosan can prevent the rehabilitation of PDI-surviving microbial cells, leading to increased biocidal efficacy.


Asunto(s)
Candida albicans/efectos de los fármacos , Quitosano/administración & dosificación , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Cloruro de Tolonio/administración & dosificación , Antiinfecciosos/administración & dosificación , Biopelículas/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Fármacos Fotosensibilizantes/administración & dosificación , Factores de Tiempo
12.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29389883

RESUMEN

Photodynamic inactivation (PDI) has been shown to be a potential treatment modality against Candida infection. However, limited light penetration might leave some cells alive and undergoing regrowth. In this study, we explored the possibility of combining PDI and antifungal agents to enhance the therapeutic efficacy of Candida albicans and drug-resistant clinical isolates. We found that planktonic cells that had survived toluidine blue O (TBO)-mediated PDI were significantly susceptible to fluconazole within the first 2 h post PDI. Following PDI, the killing efficacy of antifungal agents relates to the PDI dose in wild-type and drug-resistant clinical isolates. However, only a 3-log reduction was found in the biofilm cells, suggesting limited therapeutic efficacy under the combined treatment of PDI and azole antifungal drugs. Using confocal microscopic analysis, we showed that TBO-mediated PDI could partially remove the extracellular polymeric substance (EPS) of biofilm. Finally, we showed that a combination of PDI with caspofungin could result in the complete killing of biofilms compared to those treated with caspofungin or PDI alone. These results clearly indicate that the combination of PDI and antifungal agents could be a promising treatment against C. albicans infections.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Luz , Plancton/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de la radiación , Candida albicans/fisiología , Candida albicans/efectos de la radiación , Candidiasis/microbiología , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Fotoquimioterapia/métodos , Plancton/efectos de la radiación , Cloruro de Tolonio/farmacología , Triazoles/farmacología
13.
J Biol Chem ; 292(51): 20859-20870, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29084850

RESUMEN

DNA secondary structures and methylation are two well-known mechanisms that regulate gene expression. The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), is overexpressed in ∼90% of human cancers to maintain telomere length for cell immortalization. Binding of CCCTC-binding factor (CTCF) to the first exon of the hTERT gene can down-regulate its expression. However, DNA methylation in the first exon can prevent CTCF binding in most cancers, but the molecular mechanism is unknown. The NMR analysis showed that a stretch of guanine-rich sequence in the first exon of hTERT and located within the CTCF-binding region can form two secondary structures, a hairpin and a quadruplex. A key finding was that the methylation of cytosine at the specific CpG dinucleotides will participate in quartet formation, causing the shift of the equilibrium from the hairpin structure to the quadruplex structure. Of further importance was the finding that the quadruplex formation disrupts CTCF protein binding, which results in an increase in hTERT gene expression. Our results not only identify quadruplex formation in the first exon promoted by CpG dinucleotide methylation as a regulator of hTERT expression but also provide a possible mechanistic insight into the regulation of gene expression via secondary DNA structures.


Asunto(s)
Telomerasa/genética , Secuencia de Bases , Sitios de Unión/genética , Factor de Unión a CCCTC/metabolismo , Línea Celular , Islas de CpG , ADN/química , ADN/genética , Metilación de ADN , Exones , G-Cuádruplex , Expresión Génica , Humanos , Secuencias Invertidas Repetidas , Cinética , Mutagénesis , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Termodinámica
14.
PLoS One ; 12(5): e0178493, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28558025

RESUMEN

Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous disorders. Some NF1 patients develop benign large plexiform neurofibroma(s) at birth, which can then transform into a malignant peripheral nerve sheath tumor (MPNST). There is no curative treatment for this rapidly progressive and easily metastatic neurofibrosarcoma. Photodynamic therapy (PDT) has been developed as an anti-cancer treatment, and 5-aminolevulinic (ALA) mediated PDT (ALA-PDT) has been used to treat cutaneous skin and oral neoplasms. Doxycycline, a tetracycline derivative, can substantially reduce the tumor burden in human and animal models, in addition to its antimicrobial effects. The purpose of this study was to evaluate the effect and to investigate the mechanism of action of combined doxycycline and ALA-PDT treatment of MPNST cells. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the combination of ALA-PDT and doxycycline significantly reduce MPNST survival rate, compared to cells treated with each therapy alone. Isobologram analysis showed that the combined treatment had a synergistic effect. The increased cytotoxic activity could be seen by an increase in cellular protoporphyrin IX (PpIX) accumulation. Furthermore, we found that the higher retention of PpIX was mainly due to increasing ALA uptake, rather than activity changes of the enzymes porphobilinogen deaminase and ferrochelatase. The combined treatment inhibited tumor growth in different tumor cell lines, but not in normal human Schwann cells or fibroblasts. Similarly, a synergistic interaction was also found in cells treated with ALA-PDT combined with minocycline, but not tetracycline. In summary, doxycycline can potentiate the effect of ALA-PDT to kill tumor cells. This increased potency allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo.


Asunto(s)
Ácido Aminolevulínico/farmacología , Antibióticos Antineoplásicos/farmacología , Doxiciclina/farmacología , Neurilemoma/patología , Fármacos Fotosensibilizantes/farmacología , Animales , Línea Celular Tumoral , Humanos
15.
J Physiol ; 595(2): 505-521, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27121603

RESUMEN

KEY POINTS: Intestinal ischaemia causes epithelial death and crypt dysfunction, leading to barrier defects and gut bacteria-derived septic complications. Enteral glucose protects against ischaemic injury; however, the roles played by glucose metabolites such as pyruvate and ATP on epithelial death and crypt dysfunction remain elusive. A novel form of necrotic death that involves the assembly and phosphorylation of receptor interacting protein kinase 1/3 complex was found in ischaemic enterocytes. Pyruvate suppressed epithelial cell death in an ATP-independent manner and failed to maintain crypt function. Conversely, replenishment of ATP partly restored crypt proliferation but had no effect on epithelial necroptosis in ischaemic gut. Our data argue against the traditional view of ATP as the main cytoprotective factor by glucose metabolism, and indicate a novel anti-necroptotic role of glycolytic pyruvate under ischaemic stress. ABSTRACT: Mesenteric ischaemia/reperfusion induces epithelial death in both forms of apoptosis and necrosis, leading to villus denudation and gut barrier damage. It remains unclear whether programmed cell necrosis [i.e. receptor-interacting protein kinase (RIP)-dependent necroptosis] is involved in ischaemic injury. Previous studies have demonstrated that enteral glucose uptake by sodium-glucose transporter 1 ameliorated ischaemia/reperfusion-induced epithelial injury, partly via anti-apoptotic signalling and maintenance of crypt proliferation. Glucose metabolism is generally assumed to be cytoprotective; however, the roles played by glucose metabolites (e.g. pyruvate and ATP) on epithelial cell death and crypt dysfunction remain elusive. The present study aimed to investigate the cytoprotective effects exerted by distinct glycolytic metabolites in ischaemic gut. Wistar rats subjected to mesenteric ischaemia were enterally instilled glucose, pyruvate or liposomal ATP. The results showed that intestinal ischaemia caused RIP1-dependent epithelial necroptosis and villus destruction accompanied by a reduction in crypt proliferation. Enteral glucose uptake decreased epithelial cell death and increased crypt proliferation, and ameliorated mucosal histological damage. Instillation of cell-permeable pyruvate suppressed epithelial cell death in an ATP-independent manner and improved the villus morphology but failed to maintain crypt function. Conversely, the administration of liposomal ATP partly restored crypt proliferation but did not reduce epithelial necroptosis and histopathological injury. Lastly, glucose and pyruvate attenuated mucosal-to-serosal macromolecular flux and prevented enteric bacterial translocation upon blood reperfusion. In conclusion, glucose metabolites protect against ischaemic injury through distinct modes and sites, including inhibition of epithelial necroptosis by pyruvate and the promotion of crypt proliferation by ATP.


Asunto(s)
Adenosina Trifosfato/metabolismo , Enterocitos/metabolismo , Enterocitos/patología , Glucosa/metabolismo , Ácido Pirúvico/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Animales , Apoptosis , Enterocitos/ultraestructura , Yeyuno/metabolismo , Yeyuno/patología , Yeyuno/ultraestructura , Hígado/microbiología , Masculino , Microscopía Electrónica de Transmisión , Necrosis , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas Wistar , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Bazo/microbiología
16.
Int J Mol Sci ; 17(11)2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27809278

RESUMEN

Chitosan hydrogels containing hydroxypropyl methylcellulose (HPMC) and toluidine blue O were prepared and assessed for their mucoadhesive property and antimicrobial efficacy of photodynamic inactivation (PDI). Increased HPMC content in the hydrogels resulted in increased mucoadhesiveness. Furthermore, we developed a simple In Vitro 3D gingival model resembling the oral periodontal pocket to culture the biofilms of Staphylococcus aureus (S. aureus), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), and Porphyromonas gingivalis (P. gingivalis). The PDI efficacy of chitosan hydrogel was examined against periodontal biofilms cultured in this 3D gingival model. We found that the PDI effectiveness was limited due to leaving some of the innermost bacteria alive at the non-illuminated site. Using this 3D gingival model, we further optimized PDI procedures with various adjustments of light energy and irradiation sites. The PDI efficacy of the chitosan hydrogel against periodontal biofilms can significantly improve via four sides of irradiation. In conclusion, this study not only showed the clinical applicability of this chitosan hydrogel but also the importance of the light irradiation pattern in performing PDI for periodontal disease.


Asunto(s)
Quitosano/química , Enfermedades de las Encías/tratamiento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapéutico , Fotoquimioterapia/métodos , Aggregatibacter actinomycetemcomitans/efectos de los fármacos , Aggregatibacter actinomycetemcomitans/fisiología , Aggregatibacter actinomycetemcomitans/efectos de la radiación , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Encía/efectos de los fármacos , Encía/microbiología , Encía/efectos de la radiación , Enfermedades de las Encías/microbiología , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Derivados de la Hipromelosa/química , Derivados de la Hipromelosa/uso terapéutico , Luz , Modelos Anatómicos , Bolsa Periodontal/microbiología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/fisiología , Porphyromonas gingivalis/efectos de la radiación , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Staphylococcus aureus/efectos de la radiación , Cloruro de Tolonio/química , Cloruro de Tolonio/uso terapéutico , Resultado del Tratamiento
17.
Int J Mol Sci ; 16(10): 23994-4010, 2015 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-26473836

RESUMEN

Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ° cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation.


Asunto(s)
Ácido Aminolevulínico/farmacología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Mitocondrias/patología , Invasividad Neoplásica/patología , Fotoquimioterapia/métodos , Acetilación , Azacitidina/farmacología , Línea Celular Tumoral , Movimiento Celular/fisiología , Inmunoprecipitación de Cromatina , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Humanos , Ácidos Hidroxámicos/farmacología , Metaloproteinasa 9 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/genética , MicroARNs/genética , Regiones Promotoras Genéticas/genética , Proteínas/genética , Proteínas/metabolismo
18.
Nucleic Acids Res ; 43(21): 10102-13, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26487635

RESUMEN

G-quadruplex (G4) is a promising target for anti-cancer treatment. In this paper, we provide the first evidence supporting the presence of G4 in the mitochondrial DNA (mtDNA) of live cells. The molecular engineering of a fluorescent G4 ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC), can change its major cellular localization from the nucleus to the mitochondria in cancer cells, while remaining primarily in the cytoplasm of normal cells. A number of BMVC derivatives with sufficient mitochondrial uptake can induce cancer cell death without damaging normal cells. Fluorescence studies of these anti-cancer agents in live cells and in isolated mitochondria from HeLa cells have demonstrated that their major target is mtDNA. In this study, we use fluorescence lifetime imaging microscopy to verify the existence of mtDNA G4s in live cells. Bioactivity studies indicate that interactions between these anti-cancer agents and mtDNA G4 can suppress mitochondrial gene expression. This work underlines the importance of fluorescence in the monitoring of drug-target interactions in cells and illustrates the emerging development of drugs in which mtDNA G4 is the primary target.


Asunto(s)
Antineoplásicos/química , Carbazoles/química , ADN Mitocondrial/química , Colorantes Fluorescentes/química , G-Cuádruplex , Compuestos de Piridinio/química , Animales , Antineoplásicos/toxicidad , Carbazoles/toxicidad , Línea Celular , Células HeLa , Humanos , Ratones Endogámicos BALB C , Microscopía Fluorescente , Compuestos de Piridinio/toxicidad
19.
Int J Mol Sci ; 16(9): 20859-72, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26340623

RESUMEN

Photodynamic inactivation (PDI) combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC), chitosan and toluidine blue O (TBO) to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Confocal scanning laser microscopy (CSLM) was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation.


Asunto(s)
Antiinfecciosos/administración & dosificación , Quitosano/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Derivados de la Hipromelosa/química , Fármacos Fotosensibilizantes/administración & dosificación , Cloruro de Tolonio/administración & dosificación , Animales , Antibacterianos/administración & dosificación , Biopelículas/efectos de los fármacos , Química Farmacéutica , Modelos Animales de Enfermedad , Pruebas de Sensibilidad Microbiana , Fotoquimioterapia/métodos , Pseudomonas aeruginosa/efectos de los fármacos , Ratas , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Viscosidad
20.
Free Radic Biol Med ; 86: 118-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26001729

RESUMEN

Oxidative stress mediated by photodynamic therapy (PDT) mediates the tumoricidal effect, but has also been shown to induce the expression of prosurvival molecules, such as cyclooxygenase-2 (COX-2), which is involved in tumor recurrences after PDT. However, the molecular mechanism is still not fully understood. In this study, we found that activated p38MAPK could significantly up-regulate the activity and expression of histone acetyltransferase p300 (p300HAT) in A375 and C26 cells treated with ALA-and chlorin e6 (Ce6)-mediated photodynamic treatment. A colony-formation assay showed that PDT-induced cytotoxicity was dramatically elevated in the presence of the p300HAT inhibitor anacardic acid (AA). Further studies showed that increased p300HAT acetylates histone H3 and NF-κB p65 subunit to up-regulate the COX-2 expression, which was reduced by AA or p300HAT shRNA. Using chromatin immunoprecipitation analysis, we found that the augmented acetylation of histone H3 and NF-κB increases their binding to the COX-2 promoter region. These in vitro findings were further verified in mice bearing murine C26 and human A375 tumors treated with liposomal Ce6 mediated PDT. Meanwhile, the combination of PDT and AA resulted in greater tumor regression in BALB/c mice bearing C26 tumors, compared with PDT only or combined with COX-2 inhibitor. Finally, we demonstrated that suppression of the PDT-induced p300HAT activity also resulted in the decreased expression of survivin, restoring caspase-3 activity and sensitizing PDT-treated cells from autophagy to apoptosis due to the Becline-1 cleavage. This study demonstrates for the first time the molecular mechanisms involved in histone modification induced by PDT-mediated oxidative stress, suggesting that HAT inhibitors may provide a novel therapeutic approach for improving PDT response.


Asunto(s)
Ácidos Anacárdicos/farmacología , Antineoplásicos/administración & dosificación , Fotoquimioterapia , Porfirinas/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Apoptosis , Línea Celular Tumoral , Clorofilidas , Ciclooxigenasa 2/metabolismo , Sinergismo Farmacológico , Inducción Enzimática/efectos de los fármacos , Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Procesamiento Proteico-Postraduccional , Factor de Transcripción ReIA/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Factores de Transcripción p300-CBP/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...