Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 18(13): e2106880, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35146905

RESUMEN

Self-assembled colloidal crystals (CCs) or nanoparticle (NPs) superlattices have attracted significant attention due to their potential applications in many fields. However, due to the complex interactions that govern the self-assembly, it is difficult to predict and control the superstructure organization of CCs. Herein, a facile yet effective way is demonstrated to fabricate oriented CCs from capillary assembly of polymer-tethered gold NPs (AuNPs). Assembly mechanism of polymer-tethered AuNPs and their superlattice structures are systematically studied by in situ small-angle X-ray scattering (SAXS) technology. The results show that the oriented CCs of polymer-tethered AuNPs can be obtained upon solvent evaporation in a capillary tube and the oriented structure is mainly determined by the chain length of polymer ligands and size of AuNPs. Assembly of AuNPs tethered by short-chain ligand can result in oriented face-centered cubic (fcc) superlattice, whereas AuNPs tethered by long-chain ligand can assemble into an oriented body-centered tetragonal (bct) superlattice structure. Interestingly, in situ SAXS study shows that for the sample of bct superlattice structure, a transformation from fcc to bct superlattice upon solvent evaporation is observed, which strongly depends on chain length of ligands. This work provides a useful guide for polymer-tethered AuNPs to prepare orientation colloidal crystals.

2.
Front Pharmacol ; 12: 751487, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795586

RESUMEN

Atherosclerotic cardiovascular disease and subsequent heart failure threaten global health and impose a huge economic burden on society. MicroRNA-132 (miR-132), a regulatory RNA ubiquitously expressed in the cardiovascular system, is up-or down-regulated in the plasma under various cardiac conditions and may serve as a potential diagnostic or prognostic biomarker. More importantly, miR-132 in the myocardium has been demonstrated to be a master regulator in many pathological processes of ischemic or nonischemic heart failure in the past decade, such as myocardial hypertrophy, fibrosis, apoptosis, angiogenesis, calcium handling, neuroendocrine activation, and oxidative stress, through downregulating target mRNA expression. Preclinical and clinical phase 1b studies have suggested antisense oligonucleotide targeting miR-132 may be a potential therapeutic approach for ischemic or nonischemic heart failure in the future. This review aims to summarize recent advances in the physiological and pathological functions of miR-132 and its possible diagnostic and therapeutic potential in cardiovascular disease.

3.
Acta Histochem ; 116(2): 407-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24161690

RESUMEN

Mast cells play a central role in the intestinal immune response. To investigate the relationship between degranulation, cell polarization and the reorganization of actin cytoskeleton of mast cells, we used fluorescence or gold labeling methods to identify different mast cell subtypes in human colon. The reorganization of filamentous actin was visualized and then the polarization of secretory vesicles, as well as cell surfaces, was analyzed by fluorescence microscopy and electron microscopy. Our results first showed a diversity of filamentous actin assembly or disassembly within the contacting cell membrane of different mast cell subtypes. The polarization and degranulation of secretory vesicles was not only accompanied with the assembly and disassembly of filamentous actin at the cell periphery, but also with changes of cell surface polarization. Our study provides an insight into the local membranous structures and suggested correlations of cytoskeleton arrangement with the polarization of secretory vesicles and cell surface configuration during mast cell degranulation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Degranulación de la Célula , Polaridad Celular , Colon/citología , Mastocitos/citología , Mastocitos/metabolismo , Vesículas Secretoras/metabolismo , Colon/metabolismo , Colon/ultraestructura , Citometría de Flujo , Humanos , Mastocitos/ultraestructura , Microscopía Confocal
4.
J Ethnopharmacol ; 125(1): 75-82, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19549563

RESUMEN

AIM OF THE STUDY: To investigate the effects of a traditional Chinese medicine (TCM) formula extract, named as ZD-I, on the proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. MATERIALS AND METHODS: When hMSCs cultivated in the basal medium with ZD-I, cell viability was assessed by MTT assay and cellular proliferation was assessed by SYBR green I assay. The effects of ZD-I on osteogenic differentiation of hMSCs were assessed by alkaline phosphatase (ALP) activity, mineralization assay and real-time RT-PCR. RESULTS: ZD-I (0.78-100 microg/ml) was non-cytotoxic. The 50% inhibitory concentration (IC50) of hMSCs was 200 microg/ml. ZD-I (0.78-50 microg/ml) stimulated the proliferation of hMSCs. ZD-I did not change ALP activity of hMSCs cultivated in osteogenic medium in the early stage (4 and 7 days), but ZD-I inhibited the mineralization of hMSCs through down-regulation of several osteogenic markers (e.g. osteocalcin, bone morphogenetic protein 2 and osteopontin) in the late stage. CONCLUSIONS: ZD-I stimulate cellular proliferation and decrease the bone mineral deposition of hMSCs. These results suggest ZD-I may play an important therapeutic role in osteoarthritic patients by improving proliferative capacity of hMSCs and inhibiting the mineralization of hMSCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medicina Tradicional China , Células Madre Mesenquimatosas/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Extractos Vegetales/farmacología , Fosfatasa Alcalina/metabolismo , Medios de Cultivo , Regulación de la Expresión Génica , Humanos , Técnicas In Vitro , Osteoblastos/citología , Osteoblastos/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...