Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mater Today Bio ; 24: 100933, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38283982

RESUMEN

Injured articular cartilage is a leading cause for osteoarthritis. We recently discovered that endogenous stem/progenitor cells not only reside in the superficial zone of mouse articular cartilage, but also regenerated heterotopic bone and cartilage in vivo. However, whether critical-size osteochondral defects can be repaired by pure induced chemotatic cell homing of these endogenous stem/progenitor cells remains elusive. Here, we first found that cells in the superficial zone of articular cartilage surrounding surgically created 3 × 1 mm defects in explant culture of adult goat and rabbit knee joints migrated into defect-filled fibrin/hylaro1nate gel, and this migration was significantly more robust upon delivery of exogenous granulocyte-colony stimulating factor (G-CSF). Remarkably, G-CSF-recruited chondrogenic progenitor cells (CPCs) showed significantly stronger migration ability than donor-matched chondrocytes and osteoblasts. G-CSF-recruited CPCs robustly differentiated into chondrocytes, modestly into osteoblasts, and barely into adipocytes. In vivo, critical-size osteochondral defects were repaired by G-CSF-recruited endogenous cells postoperatively at 6 and 12 weeks in comparison to poor healing by gel-only group or defect-only group. ICRS and O'Driscoll scores of articular cartilage were significantly higher for both 6- and 12-week G-CSF samples than corresponding gel-only and defect-only groups. Thus, endogenous stem/progenitor cells may be activated by G-CSF, a Food and Drug Administration (FDA)-cleared bone-marrow stimulating factor, to repair osteochondral defects.

2.
J Prosthet Dent ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38061937

RESUMEN

STATEMENT OF PROBLEM: While the high osteotomy and implant placement accuracy via robotic implant surgery has been verified, whether the force feedback in the osteotomy process can be used to determine appropriate primary implant stability remains unknown. PURPOSE: The purpose of this in vitro study was to explore the relationship between the force feedback and the primary stability of implants placed by using an autonomous dental implant robot. MATERIAL AND METHODS: Five groups (n=7) of wooden and polyurethane foam blocks were used to execute an implant surgery by using an autonomous implant robot. Tapered bone-level titanium dental implant replicas were placed in the blocks. The Young modulus, the maximal vertical and lateral drilling resistances, the position accuracy, and the insertion torque of implants were recorded. Simple linear regression, principal component analysis, and multiple linear regression were used. The osteotomy strategy for the implant site was adjusted according to the maximal vertical resistance of the pilot drill to achieve appropriate insertion torque. The correlation, Gompertz growth curve fitting of the insertion torque, and Young modulus were determined. The effect of the drilling resistances on the insertion torque was analyzed using 2-way ANOVA, simple linear regression, and the principal component analysis. RESULTS: The vertical resistance of the Ø2.2-mm pilot drill, the Ø3.5-mm twist drill, and the Ø4.1-mm profile drill had a strong simple linear correlation with the insertion torque of the implants, and the lateral resistance had a moderate linear correlation with the insertion torque. The contributions of these 6 variables to the implant torque, among which the vertical resistance of the twist drill and the pilot drill ranked first and second, were comparable. Adjustments to the strategy of site preparation according to the vertical resistance of the pilot drill achieved appropriate insertion torque (P<.001). CONCLUSIONS: The force feedback of the autonomous dental implant robot was significantly correlated with the insertion torque of implants, which may fit an interpretable mathematical model, allowing dental implants to be placed with predictable primary stability.

3.
Emerg Microbes Infect ; 12(2): 2271068, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37824079

RESUMEN

Immune overactivation is a hallmark of chronic HIV infection, which is critical to HIV pathogenesis and disease progression. The imbalance of helper T cell (Th) differentiation and subsequent cytokine dysregulation are generally considered to be the major drivers of excessive activation and inflammatory disorders in HIV infection. However, the accurate factors driving HIV-associated Th changes remained to be established. CD70, which was a costimulatory molecule, was found to increase on CD4+ T cells during HIV infection. Overexpression of CD70 on CD4+ T cells was recently reported to associate with highly pathogenic proinflammatory Th1/Th17 polarization in multiple sclerosis. Thus, the role of CD70 in the imbalance of Th polarization and immune overactivation during HIV infection needs to be investigated. Here, we found that the elevated frequency of CD70 + CD4+ T cells was negatively correlated with CD4 count and positively associated with immune activation in treatment-naïve people living with HIV (PLWH). More importantly, CD70 expression defined a population of proinflammatory Th1/17/22/GM subsets in PLWH. Blocking CD70 decreased the mRNA expression of subset-specific markers during Th1/17/22/GM polarization. Furthermore, we demonstrated that CD70 influenced the differentiation of these Th cells through STAT pathway. Finally, it was revealed that patients with a high baseline level of CD70 on CD4+ T cells exhibited a greater risk of poor immune reconstitution after antiretroviral therapy (ART) than those with low CD70. In general, our data highlighted the role of CD70 in Th1/17/22/GM differentiation during HIV infection and provided evidence for CD70 as a potential biomarker for predicting immune recovery.


Asunto(s)
Infecciones por VIH , Reconstitución Inmune , Humanos , Linfocitos T CD4-Positivos , Progresión de la Enfermedad , Diferenciación Celular , Ligando CD27/genética , Ligando CD27/metabolismo
4.
J Med Virol ; 95(10): e29136, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37804496

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron harbors more than 30 mutations of the spike protein and exhibits substantial immune evasion. Although previous study indicated that BNT162b2 messenger RNA vaccine induces potent cross-clade pan-sarbecovirus neutralizing antibodies in survivors of the infection by SARS-CoV-1, the neutralization activity and Fc-mediated effector functions of these cross-reactive antibodies elicited in SARS-CoV-1 survivors to Omicron subvariants still remain largely unknown. In this study, the neutralization activity and Fc-mediated effector functions of antibodies boosted by a third dose vaccination were characterized in SARS-CoV-1 convalescents and healthy individuals. Potent cross-clade broadly neutralizing antibodies were observed in SARS-CoV-1 survivors who received a three-dose vaccination regimen consisting of two priming doses of CoronaVac followed by one booster dose of the protein subunit vaccine ZF2001. However, the induced antibodies exhibited both reduced neutralization and impaired Fc effector functions targeting multiple Omicron subvariants. Importantly, the data also support the notion that immune imprints resulted from SARS-CoV-1 infection may exacerbate the impairment of neutralization activity and Fc-mediated effector functions to Omicron subvariants and provided invaluable information to vaccination strategy in future.


Asunto(s)
Vacuna BNT162 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Vacunas de Subunidad , SARS-CoV-2 , Sobrevivientes , Anticuerpos Neutralizantes , Anticuerpos Antivirales
5.
Mech Ageing Dev ; 215: 111868, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37666472

RESUMEN

Aging-related diseases are closely associated with the state of inflammation, which is known as "inflammaging." Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed the senescence-associated secretory phenotype (SASP). Epigenetic regulation, especially the structural regulation of chromatin, is closely linked to the regulation of SASP. In our previous study, the suppressor of variegation 3-9 homolog 1 (SUV39H1) was elucidated to interact with Lhx8 and determine the cell fate of mesenchyme stem cells. However, the function of SUV39H1 during aging and the underlying mechanism of its epigenetic regulation remains controversial. Therefore, the C57BL/6 J CAG-Cre; SUV39H1fl/fl knockout mice and irradiation-induced cellular senescence model were built in this study to deepen the understanding of epigenetic regulation by SUV39H1 and its relation to SASP. In vivo and in vitro studies demonstrated that SUV39H1 decreased with aging and served as an inhibitor of SASP, especially IL-6, MCP-1, and Vcam-1, by altering H3K9me3 enrichment in their promoter region. These results provide new insights into the epigenetic regulation of SASP.


Asunto(s)
Epigénesis Genética , Histonas , Fenotipo Secretor Asociado a la Senescencia , Animales , Ratones , Envejecimiento , Senescencia Celular , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Ratones Endogámicos C57BL , Células Madre/metabolismo , Fenotipo Secretor Asociado a la Senescencia/genética
6.
J Virol ; 97(9): e0060123, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37676001

RESUMEN

Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.


Asunto(s)
Antígenos CD13 , Infecciones por Coronavirus , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Animales , Perros , Humanos , Conejos , Antígenos CD13/metabolismo , Quirópteros/virología , Coronavirus/fisiología , Neumonía , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Clin Oral Investig ; 27(7): 3937-3948, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37060358

RESUMEN

OBJECTIVES: Limited information is available about the biological characterization of peri-implant soft tissue at the transcriptional level. The aim of this study was to investigate the effect of dental implant on the soft tissue in vivo by using paired samples and compare the differences between peri-implant soft tissue and periodontal gingiva at the transcriptional level. METHODS: Paired peri-implant soft tissue and periodontal gingiva tissue from 6 patients were obtained, and the pooled RNAs were analyzed by deep sequencing. Venn diagram was used to further screen out differentially expressed genes in every pair of samples. Annotation and enrichment analysis was performed. Further verification was done by quantitative real-time PCR. RESULTS: Totally 3549 differentially expressed genes (DEGs) were found between peri-implant and periodontal groups. The Venn diagram further identified 185 DEGs in every pair of samples, of which the enrichment analysis identified significant enrichment for cellular component was associated with external side of plasma membrane, for molecular function was protein binding, for biological process was immune system process, and for KEGG pathway was cytokine-cytokine receptor interaction. Among the DEGs, CST1, SPP1, AQP9, and SFRP2 were verified to be upregulated in peri-implant soft tissue. CONCLUSIONS: Peri-implant soft tissue showed altered expressions of several genes related to the cell-ECM interaction compared to periodontal gingiva. CLINICAL RELEVANCE: Compared to periodontal gingiva, altered cell-ECM interactions in peri-implant may contribute to the susceptibility of peri-implant diseases. At the transcriptional level, periodontal gingiva is generally considered the appropriate control for peri-implantitis, except regarding the cell-ECM interactions.


Asunto(s)
Implantes Dentales , Periimplantitis , Humanos , Encía/cirugía , Periodoncio , Implantación Dental Endoósea , Periimplantitis/genética , Perfilación de la Expresión Génica
8.
J Nanobiotechnology ; 21(1): 116, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36991451

RESUMEN

Biofilm-related diseases are a group of diseases that tolerate antimicrobial chemotherapies and therefore are refractory to treatment. Periodontitis, a non-device chronic biofilm disease induced by dental plaque, can serve as an excellent in vivo model to study the important effects of host factors on the biofilm microenvironment. Macrophage activity is one of the key factors that modulate the progression of inflammation-driven destruction in periodontitis; therefore it is an important host immunomodulatory factor. In this study, the reduction of microRNA-126 (miR-126) with the recruitment of macrophages in periodontitis was confirmed in clinical samples, and a strategy for targeted delivery of miR-126 to macrophages was explored. Exosomes overexpressing the C-X-C motif chemokine receptor 4 (CXCR4) loaded with miR-126 (CXCR4-miR126-Exo) was successfully constructed, which reduced off-target delivery to macrophages and regulated macrophages toward the anti-inflammatory phenotype. In vivo local injection of CXCR4-miR126-Exo into sites of periodontitis in rats effectively reduced bone resorption and osteoclastogenesis and inhibited the progression of periodontitis. These results provide new insights for designing novel immunomodulatory factor targeted delivery systems to treat periodontitis and other biofilm-related diseases.


Asunto(s)
Exosomas , MicroARNs , Periodontitis , Ratas , Animales , Periodontitis/terapia , Inflamación , MicroARNs/genética , Macrófagos , Receptores CXCR4/genética
9.
Clin Chem Lab Med ; 61(6): 1123-1130, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-36656975

RESUMEN

OBJECTIVES: To describe a high-sensitivity SARS-CoV-2 antigen test that is based on the fully automated light-initiated chemiluminescent immunoassay (LiCA®), and to validate its analytical characteristics and clinical agreement on detecting SARS-CoV-2 infection against the reference molecular test. METHODS: Analytical performance was validated and detection limits were determined using different types of nucleocapsid protein samples. 798-pair anterior nasal swab specimens were collected from hospitalized patients and asymptomatic screening individuals. Agreement between LiCA® antigen and real-time reverse transcription polymerase chain reaction (rRT-PCR) was evaluated. RESULTS: Repeatability and within-lab precision were 1.6-2.3%. The C5∼C95 interval was -5.1-4.6% away from C50. Detection limits in average (SD) were 325 (±141) U/mL on the national reference panel, 0.07 (±0.04) TCID50/mL on active viral cultures, 0.27 (±0.09) pg/mL on recombinant nucleocapsid proteins and 1.07 (±1.01) TCID50/mL on inactivated viral suspensions, respectively. LiCA detected a median of 374-fold (IQR 137-643) lower levels of the viral antigen than comparative rapid tests. As reference to the rRT-PCR method, overall sensitivity and specificity were determined to be 97.5% (91.4-99.7%) and 99.9% (99.2-100%), respectively. Total agreement between both methods was 99.6% (98.7-99.9%) with Cohen's kappa 0.98 (0.96-1). A positive detection rate of 100% (95.4-100%) was obtained as Ct≤37.8. CONCLUSIONS: The LiCA® system provides an exceptionally high-sensitivity and fully automated platform for the detection of the SARS-CoV-2 antigen in nasal swabs. The assay may have high potential use for large-scale population screening and surveillance of COVID-19 as an alternative to the rRT-PCR test.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Prueba de COVID-19/métodos , Sensibilidad y Especificidad , Proteínas de la Nucleocápside/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Inmunoensayo/métodos
10.
J Prosthet Dent ; 2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473750

RESUMEN

STATEMENT OF PROBLEM: Both the placement accuracy and primary stability of implants are important to implant therapy in the esthetic zone. The effect of dynamic and static computer-assisted navigation on the primary stability of implants in the esthetic zone remains uncertain. PURPOSE: The purpose of this case-control study was to investigate the effect of dynamic and static computer-assisted navigation on the placement accuracy and primary stability of implants in the esthetic zone. MATERIAL AND METHODS: Partially edentulous participants who received at least 1 implant in the anterior maxilla using either fully guided static or dynamic computer-assisted implant surgery (s-CAIS, d-CAIS) from January 2020 to February 2022 were screened. Participant demographic information, timing of implant placement, primary stability represented by the insertion torque value (ITV) in Ncm, and implant survival were collected from the treatment record. Bone quality at the implant sites was determined according to the Lekholm and Zarb classification. The accuracy of implant placement represented by the linear (platform: Dpl, mm; apex: Dap, mm) and angular deviations (axis: Dan, degree) between the planned and placed implants was evaluated based on the preoperative surgical plan and postoperative cone beam computed tomography (CBCT) data. A statistical analysis of the data was completed by using the chi-square, Fisher exact, Student t, and Mann-Whitney U tests (α=.05). RESULTS: A total of 32 study participants (38 implants) were included. The groups of s-CAIS (16 participants, 18 implants) and d-CAIS (16 participants, 20 implants) were statistically comparable in sex (P=.072), age (P=.548), bone quality (P=.671), and timing of implant placement (P=.719). All implants survived during an average follow-up period of 13 months. The d-CAIS group showed close linear deviations (Dpl 1.07 ±0.57 mm, Dap 1.26 ±0.53 mm) but lower angular deviation (Dan 2.14 ±1.20 degrees) and primary stability (ITV 25.25 ±7.52 Ncm) than the s-CAIS group (Dpl 0.92 ±0.46 mm, Dap 1.31 ±0.43 mm, Dan 3.31 ±1.61 degrees, ITV 30.56 ±11.23 Ncm, PDpl=.613, PDap=.743, PDan=.016, PITV=.028). CONCLUSIONS: Comparable linear positioning accuracy and higher angular deviation were found for implants placed in the esthetic zone by using s-CAIS than when using d-CAIS. Higher primary stability of implants may be achieved by using s-CAIS, as s-CAIS seemed to have higher osteotomy accuracy than d-CAIS.

11.
EMBO Rep ; 23(11): e55099, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36125406

RESUMEN

Stimulator of interferon genes (STING) is an essential signaling protein that is located on the endoplasmic reticulum (ER) and triggers the production of type I interferons (IFN) and proinflammatory cytokines in response to pathogenic DNA. Aberrant activation of STING is linked to autoimmune diseases. The mechanisms underlying homeostatic regulation of STING are unclear. Here, we report that UNC13D, which is associated with familial hemophagocytic lymphohistiocytosis (FHL3), is a negative regulator of the STING-mediated innate immune response. UNC13D colocalizes with STING on the ER and inhibits STING oligomerization. Cellular knockdown and knockout of UNC13D promote the production of interferon-ß (IFN-ß) induced by DNA viruses, but not RNA viruses. Moreover, UNC13D deficiency also increases the basal level of proinflammatory cytokines. These effects are diminished by an inhibitor of STING signaling. Furthermore, the domains involved in the UNC13D/STING interaction on both proteins are mapped. Our findings provide insight into the regulatory mechanism of STING, the previously unknown cellular function of UNC13D and the potential pathogenesis of FHL3.


Asunto(s)
Retículo Endoplásmico , Interferón Tipo I , Retículo Endoplásmico/metabolismo , Transducción de Señal , Inmunidad Innata , Interferón beta/genética
12.
Front Immunol ; 13: 947647, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967422

RESUMEN

Persistent immune activation, which occurs during the whole course of HIV infection, plays a pivotal role in CD4+ T cells depletion and AIDS progression. Furthermore, immune activation is a key factor that leads to impaired immune reconstitution after long-term effective antiretroviral therapy (ART), and is even responsible for the increased risk of developing non-AIDS co-morbidities. Therefore, it's imperative to identify an effective intervention targeting HIV-associated immune activation to improve disease management. Double negative T cells (DNT) were reported to provide immunosuppression during HIV infection, but the related mechanisms remained puzzled. Foxp3 endows Tregs with potent suppressive function to maintain immune homeostasis. However, whether DNT cells expressed Foxp3 and the accurate function of these cells urgently needed to be investigated. Here, we found that Foxp3+ DNT cells accumulated in untreated people living with HIV (PLWH) with CD4+ T cell count less than 200 cells/µl. Moreover, the frequency of Foxp3+ DNT cells was negatively correlated with CD4+ T cell count and CD4/CD8 ratio, and positively correlated with immune activation and systemic inflammation in PLWH. Of note, Foxp3+ DNT cells might exert suppressive regulation by increased expression of CD39, CD25, or vigorous proliferation (high levels of GITR and ki67) in ART-naive PLWH. Our study underlined the importance of Foxp3+ DNT cells in the HIV disease progression, and suggest that Foxp3+ DNT may be a potential target for clinical intervention for the control of immune activation during HIV infection.


Asunto(s)
Factores de Transcripción Forkhead , Infecciones por VIH , VIH-1 , Linfocitos T Reguladores , Progresión de la Enfermedad , Factores de Transcripción Forkhead/inmunología , Infecciones por VIH/inmunología , Humanos , Linfocitos T Reguladores/inmunología
14.
Front Immunol ; 13: 869286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444646

RESUMEN

Although extensive use of antiretroviral therapy (ART) has made great progress in controlling HIV replication and improving CD4+ T cell recovery, the immune reconstitution remained insufficient in some patients, who were defined as poor immunological responders (PIRs). These PIRs were at a high risk of AIDS-related and non-AIDS complications, resulting in higher morbidity and mortality rate. Thus, it is a major challenge and urgently needed to distinguish PIRs early and improve their immune function in time. Immune activation is a key factor that leads to impaired immune reconstitution in people living with HIV (PLWH) who are receiving effective ART. Double negative T cells (DNT) were reported to associate with the control of immune activation during HIV infection. However, the precise mechanisms by which DNT cells exerted their suppressive capacity during HIV infection remained puzzled. CD73, both a soluble and a membrane-bound form, display immunosuppressive effects through producing adenosine (ADO). Thus, whether DNT cells expressed CD73 and mediated immune suppression through CD73-ADO pathway needs to be investigated. Here, we found a significant downregulation of CD73 expression on DNT cells in treatment-naïve PLWH (TNs) compared to healthy controls, accompanied with increased concentration of sCD73 in plasma. Both the frequency of CD73+ DNT cells and the level of plasma sCD73 recovered after ART treatment. However, PIRs showed decreased percentage of CD73+ DNT cells compared to immunological responders (IRs). The frequency of CD73+ DNT cells was positively correlated with CD4+ T cell count and CD4/CD8 ratio, and negatively correlated with immune activation in PLWH. The level of sCD73 also showed a negative correlation to CD4+ T cell count and CD4/CD8 ratio. More importantly, in the present cohort, a higher level of sCD73 at the time of initiating ART could predict poor immune reconstitution in PLWH after long-term ART. Our findings highlighted the importance of CD73+ DNT cells and sCD73 in the disease progression and immune reconstitution of PLWH, and provided evidences for sCD73 as a potential biomarker of predicting immune recovery.


Asunto(s)
Infecciones por VIH , Reconstitución Inmune , Relación CD4-CD8 , Linfocitos T CD4-Positivos , Humanos
15.
Bioact Mater ; 18: 267-283, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35387156

RESUMEN

Irregular defects generated by trauma or surgery in orthopaedics practice were usually difficult to be fitted by the preformed traditional bone graft substitute. Therefore, the injectable hydrogels have attracted an increasing interest for bone repair because of their fittability and mini-invasivity. However, the uncontrollable spreading or mechanical failures during its manipulation remain a problem to be solved. Moreover, in order to achieve vascularized bone regeneration, alternatives of osteogenic and angiogenic growth factors should be adopted to avoid the problem of immunogenicity and high cost. In this study, a novel injectable self-healing hydrogel system (GMO hydrogel) loaded with KP and QK peptides had been developed for enhancing vascularized regeneration of small irregular bone defect. The dynamic imine bonds between gelatin methacryloyl and oxidized dextran provided the GMO hydrogel with self-healing and shear-thinning abilities, which led to an excellent injectability and fittability. By photopolymerization of the enclosed GelMA, GMO hydrogel was further strengthened and thus more suitable for bone regeneration. Besides, the osteogenic peptide KP and angiogenic peptide QK were tethered to GMO hydrogel by Schiff base reaction, leading to desired releasing profiles. In vitro, this composite hydrogel could significantly improve the osteogenic differentiation of BMSCs and angiogenesis ability of HUVECs. In vivo, KP and QK in the GMO hydrogel demonstrated a significant synergistic effect in promoting new bone formation in rat calvaria. Overall, the KP and QK loaded GMO hydrogel was injectable and self-healing, which can be served as an efficient approach for vascularized bone regeneration via a minimally invasive approach.

16.
Ultrason Sonochem ; 83: 105930, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35114554

RESUMEN

A combined ultrasonic and thermal (US-TM) treatment was developed in this study to achieve a high efficacy of P. fluorescens biofilm control. The present study demonstrated that combined a moderate ultrasound treatment (power ≥ 80 W) and a mild heat (up to 50 °C) largely destroyed biofilm structure in 15 min and removed>65.63% of biofilm from a glass slide where cultivated the P. fluorescens biofilm. Meanwhile, the viable cell count was decreased from 10.72 to 6.48 log10CUF/mL. Differences in biofilm removal and lethal modes of US-TM treatment were confirmed through microscopies analysis in vitro. The ultrasound first contributed to releasing the bacteria in the biofilm to the environment and simultaneously exposing inner bacteria at the deep layer of biofilm depending on shear force, shock waves, acoustic streaming, etc. When the biofilm structure was destroyed, US-TM treatment would synergistically inactivate P. fluorescens cells. In silico studies adopted COMSOL to simulate acoustic pressure and temperature distribution in the bioreactor; both of them were significantly influenced by various factors, such as input power, sonotrode position, materials and volume of container, etc. Facing the biofilm issue existing on the surface of container, boundary conditions were exported and thereby pointing out potential "dead ends" where the ultrasound may not be effectively transduced. Both in vitro and in silico results may inspire the food industry to adopt US-TM treatment to achieve biofilm control.


Asunto(s)
Pseudomonas fluorescens , Antibacterianos , Biopelículas , Reactores Biológicos , Pseudomonas fluorescens/fisiología , Ultrasonido
17.
J Mol Biol ; 434(6): 167438, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34990653

RESUMEN

Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.


Asunto(s)
Antivirales , Infecciones por Coronavirus , Coronavirus , Desarrollo de Medicamentos , Evasión Inmune , Interferón Tipo I , Desarrollo de Vacunas , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/prevención & control , Coronavirus/inmunología , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Humanos , Inmunidad Innata , Interferón Tipo I/inmunología , Interferón Tipo I/uso terapéutico , SARS-CoV-2/inmunología
18.
Cell Rep ; 38(2): 110205, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34982968

RESUMEN

Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.


Asunto(s)
COVID-19/virología , Interacciones Huésped-Patógeno/genética , SARS-CoV-2/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Genoma Viral/genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación/genética , Filogenia , Polimorfismo de Nucleótido Simple/genética , Glicoproteína de la Espiga del Coronavirus/genética , Desarrollo de Vacunas/métodos , Adulto Joven
19.
J Glob Antimicrob Resist ; 28: 241-248, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35092830

RESUMEN

OBJECTIVES: Transmitted drug resistance (TDR) is a critical ongoing public health challenge in HIV/AIDS therapy. We explore the prevalence of TDR, its patterns, its associated risk factors, and predicted drug sensitivity in Beijing between 2015 and 2018. METHODS: Retrospective data on TDR from 3265 antiretroviral therapy (ART)-naïve patients were collected at Beijing Ditan Hospital from 1 August 2014 to 31 July 2018. TDR was defined according to the Stanford Drug Resistance Mutations Database. TDR prevalence, pattern, risk factors, and predicted drug sensitivity were analysed. RESULTS: The overall prevalence of HIV-1 TDR was 6.68% (218 of 3265), including 0.77%, 3.64%, and 2.36% resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-NRTIs (NNRTIs), and protease inhibitors, respectively. The thymidine analogue mutations (TAMs) M41L/LM (4, 0.12%) and non-TAMs mutations M184V/MV/MI (8; 0.24%) were the primary NRTI-associated resistance mutations. K103N/KN (NNRTI associated) and M46L/I/IMV/IM/ML (protease inhibitor associated) were the other major resistance mutations. Patients 40-59 years old who had the CRF08_BC subtype were identified as having higher risk for drug resistance mutation. CONCLUSIONS: The prevalence of TDR among ART-naïve individuals with HIV-1 in Beijing was at a moderate level. Long-time and continuous surveillance of HIV TDR is necessary step in the therapy of ART-naive patients.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Adulto , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , VIH-1/genética , Humanos , Persona de Mediana Edad , Prevalencia , Inhibidores de Proteasas/farmacología , Estudios Retrospectivos
20.
Int J Ment Health Addict ; 20(2): 1273-1288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33456407

RESUMEN

Fear is a negative emotional reaction to or persistent worry over an imminent public health event like COVID-19. The COVID-Fear Scale was developed in many countries, but not in China. The current study aims to examine the psychometric properties of Chinese version of the Fear of COVID-19 Scale. Translation into Chinese and back-translation into English were conducted firstly. Item analysis and exploratory factor analysis were conducted in Sample 1, followed by validity tests in Sample 2. Likely, test-retest reliability was conducted in sample 3. A bifactor structure of Chinese version of FCV-19S with a general fear factor and two orthogonal group factors with fear thoughts and physical response was confirmed. Besides, it has good internal consistency reliability (α = .92), composite reliability (CR = .92), and validity correlation validity. The results of the present study confirmed that the Chinese version of FCV-19S has good psychometric properties in the Chinese communities. Supplementary Information: The online version contains supplementary material available at 10.1007/s11469-020-00441-7.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...