Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Radiol ; 175: 111459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636408

RESUMEN

OBJECTIVES: This study aimed to investigate tumor heterogeneity of colorectal liver metastases (CRLM) and stratify the patients into different risk groups of prognoses following liver resection by applying an unsupervised radiomics machine-learning approach to preoperative CT images. METHODS: This retrospective study retrieved clinical information and CT images of 197 patients with CRLM from The Cancer Imaging Archive (TCIA) database. Radiomics features were extracted from a segmented liver lesion identified at the portal venous phase. Those features which showed high stability, non-redundancy, and indicative information were selected. An unsupervised consensus clustering analysis on these features was adopted to identify subgroups of CRLM patients. Overall survival (OS), disease-free survival (DFS), and liver-specific DFS were compared between the identified subgroups. Cox regression analysis was applied to evaluate prognostic risk factors. RESULTS: A total of 851 radiomics features were extracted, and 56 robust features were finally selected for unsupervised clustering analysis which identified two distinct subgroups (96 and 101 patients respectively). There were significant differences in the OS, DFS, and liver-specific DFS between the subgroups (all log-rank p < 0.05). The subgroup with worse outcome using the proposed radiomics model was consistently associated with shorter OS, DFS, and liver-specific DFS, with hazard ratios of 1.78 (95 %CI: 1.12-2.83), 1.72 (95 %CI: 1.16-2.54), and 1.59 (95 %CI: 1.10-2.31), respectively. The general performance of this radiomics model outperformed the traditional Clinical Risk Score and Tumor Burden Score in the prognosis prediction after surgery for CRLM. CONCLUSION: Radiomics features derived from preoperative CT images can reveal the heterogeneity of CRLM and stratify the patients with CRLM into subgroups with significantly different clinical outcomes.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Tomografía Computarizada por Rayos X , Aprendizaje Automático no Supervisado , Humanos , Masculino , Femenino , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Persona de Mediana Edad , Tomografía Computarizada por Rayos X/métodos , Pronóstico , Estudios Retrospectivos , Anciano , Adulto , Tasa de Supervivencia , Anciano de 80 o más Años , Aprendizaje Automático , Radiómica
2.
EBioMedicine ; 100: 104952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176203

RESUMEN

BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ácidos Pentanoicos , Probióticos , Humanos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/etiología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Lactobacillus acidophilus , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/etiología , Hígado/metabolismo , Transformación Celular Neoplásica/metabolismo , Carcinogénesis/patología , Dieta Alta en Grasa , Colina/metabolismo , Probióticos/farmacología , Probióticos/uso terapéutico , Ratones Endogámicos C57BL
3.
Cell ; 187(4): 882-896.e17, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295787

RESUMEN

Streptococcus anginosus (S. anginosus) was enriched in the gastric mucosa of patients with gastric cancer (GC). Here, we show that S. anginosus colonized the mouse stomach and induced acute gastritis. S. anginosus infection spontaneously induced progressive chronic gastritis, parietal cell atrophy, mucinous metaplasia, and dysplasia in conventional mice, and the findings were confirmed in germ-free mice. In addition, S. anginosus accelerated GC progression in carcinogen-induced gastric tumorigenesis and YTN16 GC cell allografts. Consistently, S. anginosus disrupted gastric barrier function, promoted cell proliferation, and inhibited apoptosis. Mechanistically, we identified an S. anginosus surface protein, TMPC, that interacts with Annexin A2 (ANXA2) receptor on gastric epithelial cells. Interaction of TMPC with ANXA2 mediated attachment and colonization of S. anginosus and induced mitogen-activated protein kinase (MAPK) activation. ANXA2 knockout abrogated the induction of MAPK by S. anginosus. Thus, this study reveals S. anginosus as a pathogen that promotes gastric tumorigenesis via direct interactions with gastric epithelial cells in the TMPC-ANXA2-MAPK axis.


Asunto(s)
Gastritis , Neoplasias Gástricas , Infecciones Estreptocócicas , Streptococcus anginosus , Animales , Humanos , Ratones , Atrofia/patología , Carcinogénesis , Transformación Celular Neoplásica , Mucosa Gástrica , Gastritis/patología , Inflamación/patología , Proteínas Quinasas Activadas por Mitógenos , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Streptococcus anginosus/fisiología , Infecciones Estreptocócicas/patología
4.
Aging Cell ; 23(2): e14035, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37970652

RESUMEN

The role of circulatory proteomics in osteoporosis is unclear. Proteome-wide profiling holds the potential to offer mechanistic insights into osteoporosis. Serum proteome with 413 proteins was profiled by liquid chromatography-tandem mass spectrometry (LC-MS/MS) at baseline, and the 2nd, and 3rd follow-ups (7704 person-tests) in the prospective Chinese cohorts with 9.8 follow-up years: discovery cohort (n = 1785) and internal validation cohort (n = 1630). Bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry (DXA) at follow-ups 1 through 3 at lumbar spine (LS) and femoral neck (FN). We used the Light Gradient Boosting Machine (LightGBM) to identify the osteoporosis (OP)-related proteomic features. The relationships between serum proteins and BMD in the two cohorts were estimated by linear mixed-effects model (LMM). Meta-analysis was then performed to explore the combined associations. We identified 53 proteins associated with osteoporosis using LightGBM, and a meta-analysis showed that 22 of these proteins illuminated a significant correlation with BMD (p < 0.05). The most common proteins among them were PHLD, SAMP, PEDF, HPTR, APOA1, SHBG, CO6, A2MG, CBPN, RAIN APOD, and THBG. The identified proteins were used to generate the biological age (BA) of bone. Each 1 SD-year increase in KDM-Proage was associated with higher risk of LS-OP (hazard ratio [HR], 1.25; 95% CI, 1.14-1.36, p = 4.96 × 10-06 ), and FN-OP (HR, 1.13; 95% CI, 1.02-1.23, p = 9.71 × 10-03 ). The findings uncovered that the apolipoproteins, zymoproteins, complements, and binding proteins presented new mechanistic insights into osteoporosis. Serum proteomics could be a crucial indicator for evaluating bone aging.


Asunto(s)
Osteoporosis , Proteoma , Humanos , Estudios Prospectivos , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Osteoporosis/genética , Envejecimiento
5.
Clin Nutr ; 42(12): 2328-2337, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37862819

RESUMEN

BACKGROUND & AIMS: Polyunsaturated fatty acids (PUFAs) may play a vital role in maintaining skeletal muscle mass in the aged population. This study investigated the longitudinal relationship between the concentrations of erythrocyte membrane PUFAs and age-related changes in skeletal muscle mass over an average 6.5 years of follow-up in a Chinese middle-aged and older adult population. METHODS: A total of 1494 participants aged 57.4 ± 4.7 years were included in this study. Skeletal muscle mass was determined using dual-energy X-ray absorptiometry. Per year percent changes in the skeletal muscle index (Δ% SMI), appendicular skeletal muscle index (Δ% ASMI), and total body lean mass index (Δ% TBLMI) from baseline were calculated. Concentrations of total and individual cis-n-3 and cis-n-6 PUFAs of the erythrocyte membrane were determined using gas-liquid chromatography. RESULTS: Fully adjusted linear regression models showed that per unit increases in the concentrations of C18:2 n-6, C20:4 n-6, C22:4 n-6, and total n-6 PUFAs resulted in increases of 0.022%-0.155 % in the Δ% SMI (P for linearity: <0.001-0.006). Restricted cubic spline analysis revealed an inverted U-shaped relationship between the concentrations of C20:2 n-6, C22:5 n-3, C22:6 n-3, and total n-3 PUFAs and the Δ% SMI (P for non-linearity: <0.001-0.036). In addition, an inverted U-shaped curve was also detected for the relationships of the linoleic acid/α-linolenic acid ratio (P for non-linearity = 0.010) and n-6/n-3 PUFA ratio (P for non-linearity = 0.013) with the Δ% SMI, with the Δ% SMI peaking at respective ratios of 124.96 and 3.69. Similar associations were revealed by the Bayesian kernel machine regression model. No interaction effect was detected between the individual PUFAs for the Δ% SMI in the bivariate exposure-response analysis. Overall, similar results were observed for the Δ% ASMI and Δ% TBLMI. CONCLUSIONS: The associations between different individual PUFAs and age-related muscle loss in middle-aged and older adults may be different. Our results suggest that high concentrations of erythrocyte membrane n-6 PUFAs may be correlated with less skeletal muscle mass loss, whereas extremely high concentrations of n-3 PUFAs may be correlated with more muscle loss.


Asunto(s)
Membrana Eritrocítica , Ácidos Grasos Omega-3 , Persona de Mediana Edad , Humanos , Anciano , Membrana Eritrocítica/química , Estudios Prospectivos , Teorema de Bayes , Ácidos Grasos Insaturados , Músculo Esquelético , Ácidos Grasos/análisis
6.
Nat Commun ; 14(1): 4677, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542037

RESUMEN

KRAS is an important tumor intrinsic factor driving immune suppression in colorectal cancer (CRC). In this study, we demonstrate that SLC25A22 underlies mutant KRAS-induced immune suppression in CRC. In immunocompetent male mice and humanized male mice models, SLC25A22 knockout inhibits KRAS-mutant CRC tumor growth with reduced myeloid derived suppressor cells (MDSC) but increased CD8+ T-cells, implying the reversion of mutant KRAS-driven immunosuppression. Mechanistically, we find that SLC25A22 plays a central role in promoting asparagine, which binds and activates SRC phosphorylation. Asparagine-mediated SRC promotes ERK/ETS2 signaling, which drives CXCL1 transcription. Secreted CXCL1 functions as a chemoattractant for MDSC via CXCR2, leading to an immunosuppressive microenvironment. Targeting SLC25A22 or asparagine impairs KRAS-induced MDSC infiltration in CRC. Finally, we demonstrate that the targeting of SLC25A22 in combination with anti-PD1 therapy synergizes to inhibit MDSC and activate CD8+ T cells to suppress KRAS-mutant CRC growth in vivo. We thus identify a metabolic pathway that drives immunosuppression in KRAS-mutant CRC.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Colorrectales , Masculino , Ratones , Animales , Línea Celular Tumoral , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Asparagina , Inmunoterapia , Microambiente Tumoral
7.
Cell Rep Med ; 4(8): 101144, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586322

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is an emerging risk factor of hepatocellular carcinoma (HCC). However, the mechanism and target therapy of NAFLD-HCC are still unclear. Here, we identify that the N6-methyladenosine (m6A) methyltransferase METTL3 promotes NAFLD-HCC. Hepatocyte-specific Mettl3 knockin exacerbated NAFLD-HCC formation, while Mettl3 knockout exerted the opposite effect in mice. Single-cell RNA sequencing revealed that METTL3 suppressed antitumor immune response by reducing granzyme B (GZMB+) and interferon gamma-positive (IFN-γ+) CD8+ T cell infiltration, thereby facilitating immune escape. Mechanistically, METTL3 mediates sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) mRNA m6A to promote its translation, leading to the activation of cholesterol biosynthesis. This enhanced secretion of cholesterol and cholesteryl esters that impair CD8+ T cell function in the tumor microenvironment. Targeting METTL3 by single-guide RNA, nanoparticle small interfering RNA (siRNA), or pharmacological inhibitor (STM2457) in combination with anti-programmed cell death protein 1 (PD-1) synergized to reinvigorate cytotoxic CD8+ T cells and mediate tumor regression. Together, METTL3 is a therapeutic target in NAFLD-HCC, especially in conjunction with immune checkpoint blockade (ICB) therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metiltransferasas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Linfocitos T CD8-positivos , Inmunoterapia , Interferón gamma/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Metiltransferasas/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Microambiente Tumoral
8.
Gastroenterology ; 165(2): 445-462, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37169182

RESUMEN

BACKGROUND & AIMS: Immune checkpoint blockade therapy benefits only a small subset of patients with colorectal cancer (CRC), and identification of CRC-intrinsic events modulating immune checkpoint blockade efficacy is an unmet need. We found that AlkB homolog 5 (ALKBH5), an RNA N6-methyladenosine eraser, drives immunosuppression and is a molecular target to boost immune checkpoint blockade therapy in CRC. METHODS: Clinical significance of ALKBH5 was evaluated in human samples (n = 205). Function of ALKBH5 was investigated in allografts, CD34+ humanized mice, and Alkbh5 knockin mice. Immunity change was determined by means of flow cytometry, immunofluorescence, and functional investigation. Methylated RNA immunoprecipitation sequencing and RNA sequencing were used to identify ALKBH5 targets. Vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA was constructed for targeting ALKBH5 in vivo. RESULTS: High ALKBH5 expression predicts poor prognosis in CRC. ALKBH5 induced myeloid-derived suppressor cell accumulation but reduced natural killer cells and cytotoxic CD8+ T cells to induce colorectal tumorigenesis in allografts, CD34+ humanized mice, and intestine-specific Alkbh5 knockin mice. Mechanistically, AXIN2, a Wnt suppressor, was identified as a target of ALKBH5. ALKBH5 binds and demethylates AXIN2 messenger RNA, which caused its dissociation from N6-methyladenosine reader IGF2BP1 and degradation, resulting in hyperactivated Wnt/ß-catenin. Subsequently, Wnt/ß-catenin targets, including Dickkopf-related protein 1 (DKK1) were induced by ALKBH5. ALKBH5-induced DKK1 recruited myeloid-derived suppressor cells to drive immunosuppression in CRC, and this effect was abolished by anti-DKK1 in vitro and in vivo. Finally, vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA, or anti-DKK1 potentiated anti-PD1 treatment in suppressing CRC growth by enhancing antitumor immunity. CONCLUSIONS: This study identified an ALKBH5-N6-methyladenosine-AXIN2-Wnt-DKK1 axis in CRC, which drives immune suppression to facilitate tumorigenesis. Targeting of ALKBH5 is a promising strategy for sensitizing CRC to immunotherapy.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Humanos , Ratones , Animales , beta Catenina/genética , beta Catenina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carcinogénesis/genética , Transformación Celular Neoplásica , ARN Interferente Pequeño/metabolismo , Inmunoterapia , Terapia de Inmunosupresión , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , Proteína Axina , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
9.
Clin Nutr ; 42(6): 887-898, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37086617

RESUMEN

BACKGROUND & AIMS: Previous studies have suggested that circulating 25-hydroxyvitamin D (25 [OH]D, VD) and the gut microbiota-bile acid axis play crucial roles in metabolic health. Exploring the mediating role of the gut microbiota-bile acid axis would improve our understanding of the mechanisms underlying the effects of VD on human metabolic health. This study examined the association between plasma 25(OH)D and the prevalence/incidence of metabolic syndrome (MetS) and the mediating role of the gut microbiota-bile acid axis. METHODS: This prospective study included 3180 participants with plasma 25(OH)D data at baseline and 2966 participants with a 9-year follow-up. MetS was determined every three years. The gut microbiota was analyzed by 16S rRNA sequencing in 1752 participants, and targeted bile acid metabolites in feces were further determined in 974 participants using UPLC‒MS/MS at the middle of the study. Mediating roles of microbiota and bile acids in the VD-MetS associations were analyzed using mediation/path analyses adjusted for potential confounders. RESULTS: Among the 2966 participants who were followed-up, 1520, 193, 647, and 606 were MetS-free (normal), recovered, had incident MetS, and had persistent MetS, respectively. The multivariable-adjusted ORs (95% CIs) of MetS prevalence were 0.65 (0.50, 0.84) for baseline MetS and 0.46 (0.33, 0.65) for 9-year persistent MetS in quartile 4 (compared to quartile 1) of plasma 25(OH)D (median: 37.7 vs. 19.6, ng/ml). The corresponding HR (95% CI) of 9-year MetS incidence was 0.71 (0.56, 0.90) (all P-trend < 0.05). Higher VD concentrations were associated with greater α-diversity of the gut microbiota, which was inversely correlated with MetS risk. The groups classified by VD and MetS status had significantly different ß-diversity. Ruminiclostridium-6 and Christensenellaceae R-7 group were enriched in the high-VD group and were inversely associated with MetS. However, opposite associations were observed for Lachnoclostridium and Acidaminococcus. The overlapping differential microbial score (ODMS) developed from the four differential genera explained 12.2% of the VD-MetS associations (Pmediation = 0.015). Furthermore, the fecal bile acid score created from 11 differential bile acids related to ODMS and MetS mediated 34.2% of the association between ODMS and MetS (Pmediation = 0.029). Path analyses showed that the inverse association between plasma 25(OH)D and MetS could be mediated by the gut microbiota-bile acid axis. CONCLUSIONS: The findings suggest that the gut microbiota-bile acid axis partially mediates the beneficial association between plasma 25(OH)D and the risk of persistent MetS and incident MetS in the Chinese population.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Adulto , Humanos , Estudios Prospectivos , Ácidos y Sales Biliares , ARN Ribosómico 16S , Cromatografía Liquida , Pueblos del Este de Asia , Espectrometría de Masas en Tándem , Vitamina D , Vitaminas
10.
Radiol Med ; 128(2): 136-148, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36648615

RESUMEN

This study aimed to systematically summarize the performance of the machine learning-based radiomics models in the prediction of microsatellite instability (MSI) in patients with colorectal cancer (CRC). It was conducted according to the preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies (PRISMA-DTA) guideline and was registered at the PROSPERO website with an identifier CRD42022295787. Systematic literature searching was conducted in databases of PubMed, Embase, Web of Science, and Cochrane Library up to November 10, 2022. Research which applied radiomics analysis on preoperative CT/MRI/PET-CT images for predicting the MSI status in CRC patients with no history of anti-tumor therapies was eligible. The radiomics quality score (RQS) and Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) were applied to evaluate the research quality (full score 100%). Twelve studies with 4,320 patients were included. All studies were retrospective, and only four had an external validation cohort. The median incidence of MSI was 19% (range 8-34%). The area under the receiver operator curve of the models ranged from 0.78 to 0.96 (median 0.83) in the external validation cohort. The median sensitivity was 0.76 (range 0.32-1.00), and the median specificity was 0.87 (range 0.69-1.00). The median RQS score was 38% (range 14-50%), and half of the studies showed high risk in patient selection as evaluated by QUADAS-2. In conclusion, while radiomics based on pretreatment imaging modalities had a high performance in the prediction of MSI status in CRC, so far it does not appear to be ready for clinical use due to insufficient methodological quality.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Humanos , Neoplasias Colorrectales/patología , Aprendizaje Automático , Tomografía Computarizada por Tomografía de Emisión de Positrones , Estudios Retrospectivos
11.
Gut ; 72(8): 1497-1509, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36717220

RESUMEN

OBJECTIVE: The role of N6-methyladenosine (m6A) in tumour immune microenvironment (TIME) remains understudied. Here, we elucidate function and mechanism of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) in colorectal cancer (CRC) TIME. DESIGN: Clinical significance of YTHDF1 was assessed in tissue microarrays (N=408) and TCGA (N=526) cohorts. YTHDF1 function was determined in syngeneic tumours, intestine-specific Ythdf1 knockin mice, and humanised mice. Single-cell RNA-seq (scRNA-seq) was employed to profile TIME. Methylated RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) were used to identify YTHDF1 direct targets. Vesicle-like nanoparticles (VNPs)-encapsulated YTHDF1-siRNA was used for YTHDF1 silencing in vivo. RESULTS: YTHDF1 expression negatively correlated with interferon-γ gene signature in TCGA-CRC. Concordantly, YTHDF1 protein negatively correlated with CD8+ T-cell infiltration in independent tissue microarrays cohorts, implying its role in TIME. Genetic depletion of Ythdf1 augmented antitumour immunity in CT26 (MSS-CRC) and MC38 (MSI-H-CRC) syngeneic tumours, while Ythdf1 knockin promoted an immunosuppressive TIME facilitating CRC in azoxymethane-dextran sulphate-sodium or ApcMin/+ models. scRNA-seq identified reduction of myeloid-derived suppressor cells (MDSCs), concomitant with increased cytotoxic T cells in Ythdf1 knockout tumours. Integrated MeRIP-seq, RNA-seq and Ribo-seq revealed p65/Rela as a YTHDF1 target. YTHDF1 promoted p65 translation to upregulate CXCL1, which increased MDSC migration via CXCL1-CXCR2 axis. Increased MSDCs in turn antagonised functional CD8+ T cells in TIME. Importantly, targeting YTHDF1 by CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) or VNPs-siYTHDF1 boosted anti-PD1 efficacy in MSI-H CRC, and overcame anti-PD1 resistance in MSS CRC. CONCLUSION: YTHDF1 impairs antitumour immunity via an m6A-p65-CXCL1/CXCR2 axis to promote CRC and serves as a therapeutic target in immune checkpoint blockade therapy.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Ratones , Animales , Linfocitos T CD8-positivos , Neoplasias del Colon/patología , Neoplasias Colorrectales/patología , Microambiente Tumoral
12.
Neuropsychiatr Dis Treat ; 18: 2737-2745, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36444217

RESUMEN

Background: We aimed to investigate the association of post-thrombolytic D-dimer elevation with symptomatic intracranial hemorrhage (sICH) and functional outcome in AIS patients receiving intravenous thrombolysis. Methods: We retrospectively reviewed our database for patients with AIS who received intravenous thrombolysis between August 2018 and December 2021. ΔD-dimer was calculated as follow-up D-dimer minus baseline D-dimer. Poor functional outcome was defined as 3 months modified Rankin score (mRS) 3-6. sICH was defined as cerebral hemorrhagic transformation in combination with clinical deterioration of National Institutes of Health Stroke Scale (NIHSS) score ≥4 points at 24 hours. Binary logistic regression analysis was used to investigate the association of post-thrombolytic D-dimer parameters with sICH and poor functional outcome. The receiver operating characteristic (ROC) curve derived optimal cut-off of different D-dimer parameters was determined at the maximal Youden's Index. Results: A total of 325 patients were finally included. After controlling for clinical variables, follow-up D-dimer level (OR 1.230; 95% CI 1.119 to 1.351; P < 0.001) and ΔD-dimer (OR 1.347; 95% CI 1.165 to 1.559; P < 0.001) were independently associated with poor functional outcome. Additionally, follow-up D-dimer level (OR 1.095; 95% CI 1.009 to 1.188; P = 0.030) was independently related to sICH. The optimal cut-off value of follow-up D-dimer level for predicting sICH was 4185 µg/L (area under the curve 0.760; sensitivity 76.0%; specificity 81.3%); and the optimal cut-off value of follow-up D-dimer level and ΔD-dimer as a predictor for poor functional outcome was projected to be 3838 µg/L and 2190 µg/L, which yielded a sensitivity and a specificity of 62.3%, 84.5% and 73.8%, 85.2%, respectively. Conclusion: Elevated follow-up D-dimer levels are associated with sICH and poor functional outcome in AIS patients following intravenous rt-PA. Moreover, post-thrombolytic D-dimer elevation, measured by ΔD-dimer, was a better predictive biomarker for long-term outcome at 3 months.

13.
Transl Cancer Res ; 11(10): 3572-3583, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388046

RESUMEN

Background: This study aims to identify the core genes that influence the prognosis of colon cancer (CC) and analyze their relationships with clinical characteristics. Methods: The gene expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were identified. The top ten core genes were selected by bioinformatics tools and screened through the Oncomine database. The expression of core genes in CC tissues and cells was validated by immunohistochemistry, immunoblotting and quantitative real-time polymerase chain reaction. Spearman correlation was used to analyze the relationship between different parameters. Overall survival was assessed by the Kaplan-Meier method. The area under the curve (AUC) and the receiver operating curve (ROC) were applied to assess the accuracy of genes for predicting prognosis. Results: There were 1,665 DEGs that were identified from TCGA database. Bioinformatics analysis found that GNGT1, NMU, PPBP, AGT, and GNG4 were differentially expressed in CC tissue. Overexpression of NMU, PPBP, AGT, and GNG4 in CC was associated with shortened survival time (P<0.05). In the validation studies, the high expression levels of NMU, PPBP and GNG4 in CC cells and tissues were confirmed compared to the control groups (P<0.05) and were adverse prognostic biomarkers (P<0.01). The combination prognostic model of the three core genes predicted the 1-, 3-, and 5-year survival of CC with AUCs of 0.868, 0.635 and 0.770, respectively. Conclusions: High levels of NMU, PPBP, and GNG4 were associated with poor prognosis in CC. The combination prognostic model of these three genes could be a new option.

14.
Am J Clin Nutr ; 116(6): 1831-1841, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36095141

RESUMEN

BACKGROUND: Many studies have investigated the effects of soy isoflavones on weight control, but few have focused on the role of equol, a gut-derived metabolite of daidzein with greater bioavailability than other soy isoflavones. OBJECTIVES: This study examined the association of equol production with obesity and explored the mediating roles of equol-related gut microbiota and microbial carnitine metabolites. METHODS: This 6.6-y prospective study included 2958 Chinese adults (2011 females and 947 males) aged 60.6 ± 6.0 y (mean ± SD) at baseline. Urinary equol and isoflavones were measured using HPLC-tandem MS. BMI, percentage fat mass (%FM), and serum triglycerides (TGs) were assessed every 3 y. Metagenomics sequencing and assessment of carnitine metabolites in feces were performed in a subsample of 897 participants. RESULTS: Urinary equol, but not daidzein and genistein, was independently and inversely associated with the obesity-related indicators of BMI, %FM, and a biomarker (TGs). Equol producers (EPs) had lower odds of adiposity conditions and a reduced risk of 6.6-y obesity progression than non-EPs among total participants. Gut microbial analyses indicated that EPs had higher microbiome species richness (P = 3.42 × 10-5) and significantly different ß-diversity of gut microbiota compared with the non-EP group (P = 0.001), with 20 of 162 species differing significantly. EPs (compared with non-EPs) had higher abundances of Alistipes senegalensis and Coprococcus catus but lower abundances of Ruminococcus gnavus (false discovery rate <0.05). Among the 7 determined fecal acylcarnitine metabolites, palmitoylcarnitine, oleylcarnitine 18:1, and stearylcarnitine were inversely associated with EPs but positively correlated with obesity conditions and progression. Path analyses indicated that the beneficial association between equol and obesity might be mediated by gut microbiota and decreased production of 3 acylcarnitines in feces. CONCLUSIONS: This study suggests a beneficial association between equol and obesity, mediated by the gut microbiome and acylcarnitines, in adults.This trial was registered at clinicaltrials.gov as NCT03179657.


Asunto(s)
Microbioma Gastrointestinal , Isoflavonas , Adulto , Femenino , Humanos , Masculino , Adiposidad , Carnitina , Equol/orina , Isoflavonas/farmacología , Obesidad , Estudios Prospectivos , Persona de Mediana Edad
15.
Cancers (Basel) ; 14(14)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35884552

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic cell mRNA, and this modification plays a key role in regulating mRNA translation, splicing, and stability. Emerging evidence implicates aberrant m6A as a crucial player in the occurrence and development of diseases, especially GI cancers. Among m6A regulators, YTHDF1 is the most abundant m6A reader that functionally connects m6A-modified mRNA to its eventual fate, mostly notably protein translation. Here, we summarized the function, molecular mechanisms, and clinical implications of YTHDF1 in GI cancers. YTHDF1 is largely upregulated in multiple GI cancer and its high expression predicts poor patient survival. In vitro and in vivo experimental evidence largely supports the role of YTDHF1 in promoting cancer initiation, progression, and metastasis, which suggests the oncogenic function of YTHDF1 in GI cancers. Besides, YTHDF1 overexpression is associated with changes in the tumor microenvironment that are favorable to tumorigenesis. Mechanistically, YTHDF1 regulates the expression of target genes by promoting translation, thereby participating in cancer-related signaling pathways. Targeting YTHDF1 holds therapeutic potential, as the overexpression of YTHDF1 is associated with tumor resistance to chemotherapy and immunotherapy. In summary, YTHDF1-mediated regulation of m6A modified mRNA is an actionable target and a prognostic factor for GI cancers.

16.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638638

RESUMEN

Many vector-borne viruses possess the ability to manipulate vector behaviors to facilitate their transmission. There is evidence that the mechanism of this phenomenon has been described in part as direct manipulation through regulating vector chemosensation. Rice stripe virus (RSV) is transmitted by the small brown planthopper, Laodelphax striatellus (Fallen), in a persistent, circulative-propagative manner. The effect of RSV infection on the olfactory system of L. striatellus has not been fully elucidated. Here, we employed transcriptomic sequencing to analyze gene expression profiles in antennae, legs and heads (without antennae) from L. striatellus females and males with/without RSV infection. Comparisons of the differentially expressed genes (DEGs) among antennae, legs and heads indicated that tissue-specific changes in the gene expression profile were greater than sex-specific changes. A total of 17 olfactory related genes were differentially expressed in viruliferous antennae as compared to nonviruliferous antennae, including LstrOBP4/9, LstrCSP1/2/5, LstrGR28a/43a/43a-1, LstrIR1/2/NMDA1, LstrOR67/85e/56a/94 and LstrSNMP2/2-2. There are 23 olfactory related DEGs between viruliferous and nonviruliferous legs, including LstrOBP2/3/4/12/13, LstrCSP13/5/10, LstrIR1/2/Delta2/Delta2-1/kainate2/NMDA2, LstrOR12/21/31/68 and LstrORco. A low number of olfactory related DEGs were found between viruliferous and nonviruliferous heads, including LstrCSP1, LstrOBP2, LstrOR67 and LstrSNMP2-2. Among these DEGs, the expression patterns of LstrOBP2, LstrOBP3 and LstrOBP9 in three tissues was validated by quantitative real-time PCR. The demonstration of overall changes in the genes in L. striatellus' chemoreception organs in response to RSV infection would not only improve our understanding of the effect of RSV on the olfactory related genes of insect vectors but also provide insights into developing approaches to control the plant virus transmission and spread as well as pest management in the future.


Asunto(s)
Células Quimiorreceptoras/fisiología , Hemípteros/genética , Hemípteros/virología , Oryza/genética , Oryza/virología , Tenuivirus/genética , Transcriptoma/genética , Animales , Perfilación de la Expresión Génica/métodos , Proteínas de Insectos/genética , Insectos Vectores/genética , Insectos Vectores/virología , Enfermedades de las Plantas/virología , Virus de Plantas/genética
17.
Transbound Emerg Dis ; 68(6): 3482-3497, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33306274

RESUMEN

Porcine epidemic diarrhea virus (PEDV), which re-emerged in China since 2010, has swept across the whole country leading to tremendous economic losses. In this study, a total of 645 diarrhea samples collected from 156 pig farms in Sichuan and Guizhou province during 2014-2018 were tested for PEDV. We found that samples from 47.66% (84/156) of the farms were positive for PEDV with an overall detection rate of 35.81% (231/645). Fifty-two strains were selected for full-length S gene analyses, and these strains were classified into three subgroups, an S-INDEL subgroup (G1c), and two non-S-INDEL subgroups (G2b, AJ1102-like and G2c), accounting for 15.38% (8/52), 23.08% (12/52) and 59.62% (31/52) of the total analysed strains, respectively. We found these three subgroups of PEDV coexisted in Sichuan province, and the S-INDEL strain was detected in Guizhou. Further antigenic variation analysis of the neutralizing epitopes (S10, COE, SS2, SS6 and 2C10) on the spike protein revealed that the S-INDEL and non-S-INDEL strains shared similar variation features in COE and SS6, but exhibited distinct variation patterns in the S10 domain. Unique variation patterns on N-glycosylation sites in the S protein were also observed for the S-INDEL and non-S-INDEL strains. Moreover, nine strains (three from each subgroup) were subjected to full-genome characterization. Complete genome phylogeny showed an inconsistent tree topology for genotyping, with two G2c strains grouped into the GII-b (AH2012-like) genogroup and the remaining seven strains including three S-INDEL strains grouped into the GII-c genogroup. Further recombination analyses indicated that six of the GII-c strains probably originated from intra-genogroup recombinations. Notably, three newly emerged S-INDEL strains with novel recombination patterns were first identified. Together, our data revealed a new status of PEDV in southwest China, which can increase understanding of the prevalence, genetic characteristics and evolutionary profiles of circulating PEDV strains in China.


Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , China/epidemiología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Brotes de Enfermedades/veterinaria , Epidemiología Molecular , Filogenia , Virus de la Diarrea Epidémica Porcina/genética , Glicoproteína de la Espiga del Coronavirus/genética , Porcinos , Enfermedades de los Porcinos/epidemiología
18.
Microbiologyopen ; 9(12): e1131, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33205903

RESUMEN

In this study, a total of 14 vaginal samples (GPV1-14) from giant pandas were analyzed. These vaginal samples were divided into two groups as per the region and age of giant pandas. All the vaginal samples were analyzed using metagenomic sequencing. As per the outcomes of metagenomic analysis, Proteobacteria (39.04%), Firmicutes (5.27%), Actinobacteria (2.94%), and Basidiomycota (2.77%) were found to be the dominant phyla in the microbiome of the vaginal samples. At the genus level, Pseudomonas (21.90%) was found to be the most dominant genus, followed by Streptococcus (3.47%), Psychrobacter (1.89%), and Proteus (1.38%). Metastats analysis of the microbial species in the vaginal samples of giant pandas from Wolong Nature Reserve, Dujiangyan and Ningbo Youngor Zoo, and Ya'an Bifengxia Nature Reserve was found to be significantly different (p < 0.05). Age groups, that is, AGE1 (5-10 years old) and AGE2 (11-16 years old), also demonstrated significantly different inter-group microbial species (p < 0.05). For the first time, Chlamydia and Neisseria gonorrhoeae were detected in giant pandas' reproductive tract. GPV3 vaginal sample (2.63%) showed highest Chlamydia content followed by GPV14 (0.91%), and GPV7 (0.62%). GPV5 vaginal sample (7.17%) showed the highest Neisseria gonorrhoeae content, followed by GPV14 (7.02%), and GPV8 (6.50%). Furthermore, we employed eggNOG, CAZy, KEGG, and NCBI databases to investigate the functional significance of giant panda's vaginal microbial community. The outcomes indicated that giant panda's vaginal microbes were involved in biological processes. The data from this study will help in improving the reproductive health of giant pandas.


Asunto(s)
Metagenoma/genética , Microbiota/genética , Vagina/microbiología , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Factores de Edad , Animales , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , Chlamydia/genética , Chlamydia/aislamiento & purificación , Femenino , Firmicutes/genética , Firmicutes/aislamiento & purificación , Geografía , Metagenómica/métodos , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/aislamiento & purificación , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Ursidae
19.
Cancer Cell Int ; 20: 366, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774160

RESUMEN

BACKGROUND: Transgelin, an actin-binding protein, is associated with cytoskeleton remodeling. Findings from our previous studies demonstrated that transgelin was up-regulated in node-positive colorectal cancer (CRC) versus node-negative disease. Over-expression of TAGLN affected the expression of 256 downstream transcripts and increased the metastatic potential of colon cancer cells in vitro and in vivo. This study aims to explore the mechanisms through which transgelin participates in the metastasis of colon cancer cells. METHODS: Immunofluorescence and immunoblotting analysis were used to determine the cellular localization of endogenous and exogenous transgelin in colon cancer cells. Co-immunoprecipitation and subsequently high-performance liquid chromatography/tandem mass spectrometry were performed to identify the proteins that were potentially interacting with transgelin. The 256 downstream transcripts regulated by transgelin were analyzed with bioinformatics methods to discriminate the specific key genes and signaling pathways. The Gene-Cloud of Biotechnology Information (GCBI) tools were used to predict the potential transcription factors (TFs) for the key genes. The predicted TFs corresponded to the proteins identified to interact with transgelin. The interaction between transgelin and the TFs was verified by co-immunoprecipitation and immunofluorescence. RESULTS: Transgelin was found to localize in both the cytoplasm and nucleus of the colon cancer cells. Approximately 297 proteins were identified to interact with transgelin. The overexpression of TAGLN led to the differential expression of 184 downstream genes. Network topology analysis discriminated seven key genes, including CALM1, MYO1F, NCKIPSD, PLK4, RAC1, WAS and WIPF1, which are mostly involved in the Rho signaling pathway. Poly (ADP-ribose) polymerase-1 (PARP1) was predicted as the unique TF for the key genes and concurrently corresponded to the DNA-binding proteins potentially interacting with transgelin. The interaction between PARP1 and transgelin in human RKO colon cancer cells was further validated by immunoprecipitation and immunofluorescence assays. CONCLUSIONS: Our results suggest that transgelin binds to PARP1 and regulates the expression of downstream key genes, which are mainly involved in the Rho signaling pathway, and thus participates in the metastasis of colon cancer.

20.
PLoS Pathog ; 16(8): e1008710, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32817722

RESUMEN

Rice stripe virus (RSV, genus Tenuivirus, family Phenuiviridae) is the causal agent of rice stripe disease transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The midgut and salivary glands of SBPH are the first and last barriers to the viral circulation and transmission processes, respectively; however, the precise mechanisms used by RSV to cross these organs and transmit to rice plants have not been fully elucidated. We obtained the full-length cDNA sequence of L. striatellus α-tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB in vivo. Furthermore, LsTUB was shown to co-localize with RSV nonstructural protein 3 (NS3) in vivo and bound NS3 at positions 74-76 and 80-82 in vitro. Transient gene silencing of LsTUB expression caused a significant reduction in detectable RSV loads and viral NS3 expression levels, but had no effect on NS3 silencing suppressor activity and viral replication in insect cells. However, suppression of LsTUB attenuated viral spread in the bodies of SBPHs and decreased RSV transmission rates to rice plants. Electrical penetration graphs (EPG) showed that LsTUB knockdown by RNAi did not impact SBPH feeding; therefore, the reduction in RSV transmission rates was likely caused by a decrease in viral loads inside the planthopper. These findings suggest that LsTUB mediates the passage of RSV through midgut and salivary glands and leads to successful horizontal transmission.


Asunto(s)
Hemípteros/metabolismo , Proteínas de Insectos/metabolismo , Insectos Vectores/metabolismo , Oryza/virología , Enfermedades de las Plantas/virología , Tenuivirus/fisiología , Tubulina (Proteína)/metabolismo , Animales , Sistema Digestivo/metabolismo , Sistema Digestivo/virología , Hemípteros/genética , Hemípteros/virología , Proteínas de Insectos/genética , Insectos Vectores/genética , Insectos Vectores/virología , Glándulas Salivales/metabolismo , Glándulas Salivales/virología , Tubulina (Proteína)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...