Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Food Chem ; 454: 139802, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797098

RESUMEN

Direct surface analysis in ambient conditions provides information on the position and chemical composition of an object at the time of investigation. An angled sampling probe is developed in this work for direct analysis in real time (DART) ionization high-resolution mass spectrometry. The DART ion source and the interface were modified for improved surface resolution, increased ion transfer efficiency, as well as enabling two-dimensional surface scanning. The angled probe DART-MS system was used for investigating a variety of food samples including fruit peels, ginseng root, plant leaves and sections of radish. Abundant signals and distinct chemical profiles are obtained in seconds, and spatial distribution of different molecules across the sample surfaces can be observed. In addition, the developed system can quickly identify the chemical changes when the surfaces were treated. The method is capable of directly evaluating food sample surfaces with different shapes, hardness, and conditions, without any sample pretreatments.


Asunto(s)
Frutas , Espectrometría de Masas , Espectrometría de Masas/métodos , Frutas/química , Productos Biológicos/química , Productos Biológicos/análisis , Análisis de los Alimentos/métodos , Raphanus/química , Panax/química , Hojas de la Planta/química , Raíces de Plantas/química
2.
Anal Chem ; 96(20): 7799-7816, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38598751
3.
Rapid Commun Mass Spectrom ; 38(12): e9754, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38605420

RESUMEN

RATIONALE: In clinical diagnosis of liver injury, which is an important health concern, serum aminotransferase assays have been the go-to method used worldwide. However, the measurement of serum enzyme activity has limitations, including inadequate disease specificity and enzyme specificity. METHODS: With the high selectivity and specificity provided by nano liquid chromatography-tandem mass spectrometry (LC/MS/MS), this work describes a method for the simultaneous determination of six proteins in liver that can be potentially used as biomarkers for liver injury: glutamic-pyruvic transaminase 1 (GPT1), glutamic oxaloacetic transaminase 1 (GOT1), methionine adenosyl transferase 1A (MAT1A), glutathione peroxidase 1 (GPX1), cytokeratin 18 (KRT18) and apolipoprotein E (APOE). RESULTS: In validation, the method was shown to have good selectivity and sensitivity (limits of detection at pg/mL level). The analytical method revealed that, compared with normal mice, in carbon tetrachloride-induced acute liver injury mice, liver MAT1A and GPX1 were significantly lower (p < 0.01 and p < 0.05, respectively), KRT18 was significantly higher (p < 0.05) and APOE and GPT1 were marginally significantly lower (p between 0.05 and 0.1). This is the first work reporting the absolute contents of GPT1, GOT1, MAT1A, GPX1 and KRT18 proteins based on LC/MS. CONCLUSIONS: The proposed method provides a basis for establishing more specific diagnostic indicators of liver injury.


Asunto(s)
Hígado , Espectrometría de Masas en Tándem , Animales , Ratones , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Hígado/metabolismo , Apolipoproteínas E/metabolismo
4.
Electrophoresis ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38506142

RESUMEN

Numerical modeling of Taylor dispersion analysis (TDA) was performed using COMSOL Multiphysics to facilitate better and faster optimization of the experimental conditions. Parameters, such as pressure, electric field, diameter, and length of capillary on the TDA conditions, were examined for particles with hydrodynamic radius (Rh ) of 2.5-250 Å. The simulations were conducted using 25, 50, and 100 cm length tubes with diameters of 25, 50, and 100 µm. It was shown that particles with larger diffusion coefficients gave more accurate results at higher velocities, and in longer and wider columns; particles with smaller diffusion coefficients gave more accurate results at smaller velocities, and in shorter and thinner columns. Moreover, the effect of electric field on the validity and the applicability of TDA was studied using TDA in conjunction with capillary electrophoresis. Diffusion coefficients were obtained using a pressure and the TDA equation and compared with those obtained with a pressure in combination of an electric field for fluorescein, FD4, FD20, FD70, and FD500. We found that TDA can be used with the presence of moderate electrophoretic migration and electroosmotic flow, when appropriate conditions were met.

5.
Food Chem ; 447: 139004, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38492304

RESUMEN

To address the challenges of low recovery, prolonged extraction times, and environmental pollution caused by toxic solvents in traditional extraction methods, magnetic bead-enhanced deep eutectic solvent mechanochemical extraction was developed for extracting natural products from orange peels. The extraction efficiencies of deep eutectic solvents were experimentally evaluated, and theoretical methods were used to guide solvent selection. Choline chloride-ethylene glycol demonstrated the highest efficiency under the optimal extraction conditions: a molar ratio of 1:2, no water content, a solid-liquid ratio of 0.08 g/mL, and an extraction time of 60 s. The synergy between the deep eutectic solvent and magnetic bead-enhanced the mechanochemical extraction efficiencies. The study also examined the effects of different magnetic bead types and orange peel powder particle sizes on extraction efficiency, finding that a 0.11 mm particle size combined with CIP@SiO2 yielded the best results. Overall, this study holds promise as an environmentally friendly and efficient extraction method.


Asunto(s)
Citrus sinensis , Disolventes Eutécticos Profundos , Dióxido de Silicio , Solventes/química , Fenómenos Magnéticos
6.
Int J Biol Macromol ; 260(Pt 2): 129677, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266831

RESUMEN

In this study, a simple and eco-friendly method was used to treat alkaline lignin with an acidic deep eutectic solvent (DES) to obtain regenerated lignin for the efficient adsorption of pollutant dyes from aqueous environment. Based on the yield and adsorption capacity of the sorbent for these dyes, conditions such as the type and concentration of DES component, solid-to-liquid ratio, reaction time, and temperature were optimized. By characterizing and comparing alkali lignin with regenerated lignin, a series of reactions were demonstrated to occur during the DES treatment process. The performance and mechanism of methylene blue and rhodamine B adsorption on regenerated lignin were studied systematically, and the maximum adsorbed amounts were 348.29 and 551.05 mg/g at 323 K, respectively. This study provides a new strategy for the green preparation of functionalized lignin and its use in the water pollutant treatment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Lignina , Agua , Colorantes , Disolventes Eutécticos Profundos , Adsorción , Contaminantes Químicos del Agua/análisis , Solventes
7.
Anal Chem ; 95(45): 16558-16566, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37906674

RESUMEN

Proteomics provides molecular bases of biology and disease, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a platform widely used for bottom-up proteomics. Data-independent acquisition (DIA) improves the run-to-run reproducibility of LC-MS/MS in proteomics research. However, the existing DIA data processing tools sometimes produce large deviations from true values for the peptides and proteins in quantification. Peak-picking error and incorrect ion selection are the two main causes of the deviations. We present a cross-run ion selection and peak-picking (CRISP) tool that utilizes the important advantage of run-to-run consistency of DIA and simultaneously examines the DIA data from the whole set of runs to filter out the interfering signals, instead of only looking at a single run at a time. Eight datasets acquired by mass spectrometers from different vendors with different types of mass analyzers were used to benchmark our CRISP-DIA against other currently available DIA tools. In the benchmark datasets, for analytes with large content variation among samples, CRISP-DIA generally resulted in 20 to 50% relative decrease in error rates compared to other DIA tools, at both the peptide precursor level and the protein level. CRISP-DIA detected differentially expressed proteins more efficiently, with 3.3 to 90.3% increases in the numbers of true positives and 12.3 to 35.3% decreases in the false positive rates, in some cases. In the real biological datasets, CRISP-DIA showed better consistencies of the quantification results. The advantages of assimilating DIA data in multiple runs for quantitative proteomics were demonstrated, which can significantly improve the quantification accuracy.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Reproducibilidad de los Resultados , Proteínas/análisis , Péptidos/química , Programas Informáticos , Proteoma/análisis
8.
Int J Biol Macromol ; 253(Pt 6): 127394, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37832618

RESUMEN

A carbon-rich material (DESysChar) was prepared from polysaccharide within a deep eutectic system (DESys) containing oxalic acid, and systematically characterized using various analytical techniques. The investigation of reaction mechanism revealed concurrent dehydration and etherification processes. This study commenced with the extraction of plant polysaccharide using the DESys-based mechanochemical extraction method from Dendrobium officinale. Subsequently, the DESys method was used to carbonize the extracted Dendrobium officinale polysaccharide and produce DESysChar. DESysChar was then used for the adsorption and determination of pollutants in water. This study represents a significant advancement in eco-friendly material synthesis, enabling the low-temperature (120 °C) carbonization of plant-derived polysaccharides, thereby reducing energy consumption and environmental impact. The effective adsorption of methylene blue by DESysChar underscores its potential in environmental remediation. This study presents a more responsible and efficient approach to polysaccharide extraction and carbonization, addressing environmental concerns. Embracing the 4S workflow (involving Sustainable raw materials converted into Sustainable degradable products, by using Sustainable technology throughout the process to create a Sustainable environment) promotes sustainability in material development, laying the foundation for future eco-friendly practices in various industries. In summary, this study propels sustainable polysaccharide development for widespread use.


Asunto(s)
Dendrobium , Dendrobium/química , Polisacáridos/química
9.
Electrophoresis ; 44(13-14): 1027-1036, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36905223

RESUMEN

The thermodynamic properties of molecular recognition in host-guest inclusion complexes can be studied by Taylor dispersion analysis (TDA). Host-guest inclusion complexes have modest size, and it is possible to get convergent results fast, achieving greater certainty for the obtained thermodynamic properties. Cyclodextrins (CDs) and their derivatives can be used as drug carriers that can boost stability, solubility, and bioavailability of physiologically active substances. A simple and effective approach for assessing the binding properties of CD complexes that are critical in the early stages of drug and formulation development is needed to fully understand the process of CD and guest molecules' complex formation. In this work, TDA was successfully used to rapidly determine interaction parameters, including binding constant and stoichiometry, between ß-CD and folic acid (FA) along with the diffusivities of the free FA and its complex with ß-CD. Additionally, the FA diffusion coefficient obtained by TDA was compared to the results previously obtained by nuclear magnetic resonance. Affinity capillary electrophoresis (ACE) was also used to compare the binding constants obtained by different methods. The results showed that the binding constants obtained by ACE were somewhat lower than those obtained by the two TDA procedures.


Asunto(s)
Ciclodextrinas , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Ciclodextrinas/química , Termodinámica , Espectroscopía de Resonancia Magnética , Electroforesis Capilar/métodos
10.
Food Chem ; 412: 135589, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36736187

RESUMEN

In-depth studies of the extraction mechanism using deep eutectic solvents (DES), especially extraction through the formation of a deep eutectic system (DESys), revealed commonalities between the DES- and ionic liquids (IL)-based extraction systems. New applications of ILs and DES for extraction of nutritional natural products were presented. In this study, the extraction behavior of choline chloride (ChCl) and 1-(2-hydroxyethyl)-3-methylimidazolium chloride ([HMIm][Cl]) in DES and IL, respectively, in mechanochemical extraction of target compounds from Moringa oleifera leaves was systematically studied. The results suggested that both extraction methods were based on the formation of a DESys, either a normal DESys or an IL DESys. Considering the DESys-based one-step extraction improves the extraction efficiency and reduces the preparation time, the same idea can be used in IL for performance improvement. By formation of a new IL deep eutectic system based on hydrogen bond interaction in extraction, similar improvement was obtained.


Asunto(s)
Productos Biológicos , Líquidos Iónicos , Líquidos Iónicos/química , Solventes/química , Enlace de Hidrógeno , Productos Biológicos/química , Colina/química
11.
Anal Chem ; 95(4): 2213-2220, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36635092

RESUMEN

Carbohydrates play critically important roles in energy supply and biological functions in living systems. However, it has been a great challenge to identify saccharides and distinguish their isomers because they have highly similar structures and many possible positions for glycosidic linkages. In this work, an ambient ionization tandem mass spectrometry method was developed to characterize disaccharide structural isomers with in situ methylation. The direct analysis in real time ion source can be used to facilitate the methylation reaction of disaccharides with tetramethylammonium hydroxide. The hydroxyl groups of disaccharides can be methylated instantaneously, and the products can be ionized at the same time. The methylated product ions from full scan mass spectrometry (MS) and tandem MS can be used to distinguish a variety of disaccharide structural isomers with different glycosidic linkages, compositions, and configurations. Characteristic marker ions were discovered, and they can be used for the assignment of linkage type and identification of specific isomeric forms. The method was used for the direct identification of disaccharide isomers from real commercial products such as honey, wine, and milk without complex sample pretreatment or chromatographic separation.


Asunto(s)
Disacáridos , Espectrometría de Masas en Tándem , Disacáridos/química , Espectrometría de Masas en Tándem/métodos , Metilación , Carbohidratos , Iones , Isomerismo , Glicósidos , Espectrometría de Masa por Ionización de Electrospray/métodos
12.
Anal Bioanal Chem ; 415(18): 4343-4352, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36651975

RESUMEN

To systematically study the influence of host-guest interactions on the analytical performance of direct analysis in real time mass spectrometry (DART-MS), the interactions between cyclodextrins (CDs) and different Sudan dyes were investigated. The results showed that the host-guest interaction between CDs and Sudan dyes did not affect qualitative analysis of the target compounds, but led to a lower signal intensity for Sudan dyes, thus affecting quantitative analysis of the target compounds. The stronger the host-guest interaction, the weaker the signal intensity of target compound on DART-MS. The results also show that both in solution and in solid-phase microextraction (SPME), the addition of organic solvents can weaken the host-guest interaction between CDs and Sudan dyes, thus improving the signal intensity in DART-MS. In SPME, adding organic solvents has a certain practical value and can improve the efficiency of Sudan dye analysis. This study suggests that appropriate sample pretreatment is needed to weaken noncovalent interactions prior to DART-MS analysis to obtain more accurate quantitative results. The data provide some insight into the effects of other noncovalent interactions on the efficiency of DART-MS as an analytical tool, as well as the potential to study intermolecular interactions with DART-MS.


Asunto(s)
Colorantes , Microextracción en Fase Sólida , Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Solventes/química
13.
Anal Bioanal Chem ; 415(5): 887-897, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36571591

RESUMEN

Characterization of structural isomers of bioactive molecules is important for recognizing their functions, but it has been challenging due to their highly similar structures. As the main bioactive constituents of Panax ginseng, ginsenosides have different structural isomers attributed to the aglycone structure and glycosylation sites as well as stereochemistry of sugar groups attached. This work demonstrated a simple and robust in situ methylation reaction with tetramethylammonium hydroxide (TMAH) using ambient ionization source of direct analysis in real time (DART) to characterize saponin structural isomers. The DART ion source provides favorable conditions to methylate hydroxyl groups of ginsenoside instantaneously with TMAH, and it can ionize the methylated products at the same time. Methylated ginsenoside stereoisomers even with subtle structure differences generated very different mass signals from full-scan MS and tandem MS. High-resolution mass spectrometry aided the assignment of molecular structures of the various precursor and fragment ions from different ginsenosides, which provided structural information for both the aglycone skeleton and the sugar moieties in ginsenosides. The presented method was successfully used for the identification of ginsenosides in Panax ginseng, and saponin isomers were characterized without the need for chromatographic separation and/or tedious offline sample pretreatment.


Asunto(s)
Ginsenósidos , Panax , Saponinas , Espectrometría de Masas en Tándem , Ginsenósidos/análisis , Metilación , Cromatografía Líquida de Alta Presión/métodos , Panax/química , Azúcares
14.
Food Chem ; 399: 133941, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007445

RESUMEN

A deep eutectic system (DESys) is formed when a hydrogen bond acceptor (HBA) is processed with polysaccharide (hydrogen bond donor, HBD) containing plant substance in water to dissolve, extract, and recover the polysaccharide directly, instead of using a traditional deep eutectic solvent (DES). The extraction efficiency is enhanced by the direct formation of the DESys, in a mechanochemical extraction (MCE) system. Key factors affecting the extraction efficiency were systematically studied and optimized. The effects of the DESys on the structure and physicochemical properties of polysaccharides were studied by several analytical techniques. The findings demonstrated that the direct DESys formation extraction efficiency was superior than that of traditional extraction methods while retaining physicochemical properties of polysaccharides. Moreover, the composition of polysaccharides extracted with this method is different from that obtained by conventional methods. The recovery and purification process of polysaccharides is simplified by eliminating the need for an additional HBD.


Asunto(s)
Disolventes Eutécticos Profundos , Extractos Vegetales , Polisacáridos , Enlace de Hidrógeno , Extractos Vegetales/química , Plantas , Solventes/química
15.
Rapid Commun Mass Spectrom ; 36(24): e9406, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36169592

RESUMEN

RATIONALE: Exhaled breath contains many substances that are closely related to human metabolism. Analysis of its composition is important for human health, but it is difficult. Since the volatile molecules in breath samples are exhaled instantaneously, easily diffused and modified, and at low level of presence, they are difficult to identify and quantify. METHODS: A modified direct analysis in real time ion source was used for high-resolution mass spectrometry measurement of human metabolites in exhaled breath through online monitoring and offline analysis, in both positive and negative ion modes. The improved system enabled the breath volatiles as well as condensates to be directly sampled, rapidly transmitted and efficiently ionized in a confined region, and then detected using an Orbitrap mass analyzer. RESULTS: The molecular features with online and offline analysis of exhaled breath were demonstrated with obvious differences. A total of about 65 metabolites in positive ion mode and about 55 metabolites in negative ion mode were identified based on accurate m/z values. Exhalome profile and the composition proportion of different classes of compounds were obtained. The relative contents of metabolites from breath varied during different time periods throughout a day. CONCLUSIONS: A more complete picture of the human breath metabolome was provided combining the results obtained from both online and offline analysis. The developed method allows analysis of breath samples with different status rapidly and directly, and it features simple operation and metabolite identification, requiring little or no sample preparation.


Asunto(s)
Pruebas Respiratorias , Espiración , Humanos , Pruebas Respiratorias/métodos , Espectrometría de Masas/métodos , Metaboloma
16.
Anal Chem ; 93(50): 16813-16820, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34825821

RESUMEN

Ambient ionization mass spectrometry (AIMS) is simple to operate for analytes adsorbed on the surface of various shaped probes. However, gaseous substances or liquids that are easy to evaporate, diffuse, and escape in the atmosphere are harder to capture. In this work, a Tee-shaped sample introduction device coupled with direct analysis in real time mass spectrometry (DART-MS) is developed. The Tee-shaped device is placed between the DART ion source and the MS inlet with a heated sample transfer tube. Gaseous samples from either a Tedlar sampling bag or liquids evaporated from a graduated syringe were tested. The Tee-shaped device was used for several volatile organic compounds with a wide range of boiling points, and detection limits of ng/mL to fg/mL were obtained. To test the device for real-life samples, puff-by-puff analysis of a complex gaseous mainstream smoke was performed. Individual puffs can be analyzed rapidly, and there is no cross contamination between consecutive puffs. The dynamic changes of chemical components among different puffs for different types of cigarettes can be observed. This work provides a universal Tee-shaped sampling device to enhance AIMS for the analysis of volatile compounds and gases, which is adapted to different sampling modules applicable for various forms of samples. The device enables direct exploration of chemical components in complex gaseous samples without tedious sample preparation and time-consuming LC or GC separation.


Asunto(s)
Gases , Compuestos Orgánicos Volátiles , Espectrometría de Masas , Tereftalatos Polietilenos , Manejo de Especímenes
17.
Electrophoresis ; 42(20): 2094-2102, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34406665

RESUMEN

Streaming potential is created when an electrolyte solution is forced to flow pass a charged surface. For an uncoated fused silica capillary, the streaming potential is measured between the inlet and outlet vials while applying a pressure across the capillary. The changes in streaming potential can be used to characterize the properties of the capillary inner surface. In this work, HCl, NaCl, and NaOH solutions ranging from 0.4 to 6 mM were used as the background electrolyte (BGE) at temperatures of 15 to 35 °C for the mesurements. The streaming potential decreases with the increase in BGE concentration, and the trend is amplified at higher temperatures. When buffer solutions in the pH range of 1.5 to 12.7 were used as the BGE, streaming potential was shown to be sensitive to changes in pH but reaches a maximum at around 9.5. At pH < 3.3, no streaming potentials were observed. The pH of zero surface charge (streaming potential equals 0) changes with temperature, and is measured to be 3.3 to 3.1 when the temperature is changed from 15 to 35°C. Zeta potentials can be calculated from the measured streaming potential, conductivity, and the solution viscosity. Surface charge densities were calculated in this work using the zeta potentials obtained. We demonstrated that capillary surface conditions can significantly change the streaming potential, and with three different solutions, we showed that analyte-dependent adsorption can be monitored and mitigated to improve the peak symmetry and migration times reproducibility.


Asunto(s)
Electrólitos , Dióxido de Silicio , Adsorción , Reproducibilidad de los Resultados , Temperatura
18.
Chemosphere ; 272: 129892, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33601202

RESUMEN

Naphthenic acid fraction compounds (NAFCs) are a toxicologically relevant component of oil sands process-affected materials (OSPM). For the first time, we report on differences in the concentrations and distribution of NAFCs from wetlands on an Athabasca oil sands mine site with varied histories of solid and liquid OSPM input. Sampling locations included natural and naturalized reference wetlands, a reclaimed tailings pond, wetlands supplemented with OSPM, opportunistic wetlands, and tailings ponds. Samples were prepared using solid-phase extraction, and analyzed by high-resolution Orbitrap mass spectrometry; NAFC concentrations and characteristics were evaluated for all locations. The NAFCs from tailings ponds were dominated by O3-NAFCs and classical naphthenic acids (NAs; i.e., O2 species) with double bond equivalences of 3 and 4. Reference wetlands had no dominant species, and relatively little NAFC content. The heteroatomic species in opportunistic wetlands were dominated by highly-oxidized NAFC species, where Σ [O3:O6] species constituted 55-75% of the assignable spectrum and 3-4% NAs; in tailings ponds NAs constituted 47-51%. A relatively young (4-year-old) wetland built on a former tailings pond had NAFC concentrations between 65 and 80 mg/L, and NAs constituted 47% of the assignable spectrum. There was thus little apparent oxidation of NAFCs at this young wetland. The composition of NAFCs from one wetland (≥15 years old) supplemented with OSPM contained a greater proportion of oxidized species than tailings, suggesting NAFC transformation therein. These data suggest that while NAFCs are persistent in some wetlands, there is preliminary evidence for oxidation in mature wetlands.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Ácidos Carboxílicos , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis
19.
Electrophoresis ; 42(4): 360-368, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33345341

RESUMEN

Concentration sensitivity is a key performance indicator for analytical techniques including for capillary electrophoresis-mass spectrometry (CE-MS) with electrospray ionization (ESI). In this study, a flow-through microvial interface was used to couple CE with MS and improve the ESI stability and detection sensitivity. By infusing a peptide mixture through the interface into an MS detector at a typical flow rate for CE-MS analysis, the spatial region near the interface was mapped for MS signal intensity. When the sprayer tip was within a 6 × 6.5 × 5 mm region in front of the MS inlet, the ESI was stable with no significant loss of signal intensity for ions with m/z 239. Finite element simulations showed that the average electric field strength at the emitter tip did not change significantly with minor changes in emitter tip location. Experiments were conducted with four different mass spectrometer platforms coupled to CE via the flow-through microvial interface. Key performance indicators, that is, limit of detection (LOD) and linearity of calibration curves were measured for nine amino acids and five peptides. Inter- and intraday reproducibility were also tested. The results were shown to be suitable for quantification when internal standards were used.


Asunto(s)
Electroforesis Capilar/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Aminoácidos/análisis , Diseño de Equipo , Límite de Detección , Modelos Lineales , Péptidos/análisis , Péptidos/química , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/instrumentación
20.
Talanta ; 224: 121880, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379089

RESUMEN

Herbal medicine formulas (HMFs), the combinations of two or more herbal medicine (HM) ingredients required in a single prescription, are a typical kind of combined sample matrices. LC-MS is a powerful platform for the analyses of such complex samples. The optimization of separation conditions may require a lot of experiments, because multiple analytes need to be separated from a plethora of possible interfering compounds in the sample mixture containing different herbal medicines. To greatly reduce the complexity needed for the optimization of separation conditions, this work proposes a data-driven approach for the systematic development of LC-MS methods for HMFs, using six HMFs created from four HMs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, Corydalis Rhizoma and Ophiopogonis Radix) as case-studies. In this approach, the chromatographic peak parameters (like retention times) of the analytes and interfering compounds under different separation conditions were extracted from the LC-MS database of the HMs. Then data-driven models between the chromatographic peak parameters and the separation parameters were built with machine learning methods (r > 0.996 for all the compounds) and used to predict the chromatographic peaks of the analytes and interfering compounds in HMF analyses. Based on the predictions, all of the separation parameters were optimized without any previous experiments on the HMFs. In the validation experiments for the six HMFs, all of the analytes were well separated. The data-driven approach demonstrated enables systematic and rapid development of LC-MS methods for HMFs, and the separation conditions can be efficiently adjusted for different analytes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...