Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Phys Chem Chem Phys ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779839

RESUMEN

Due to its adverse environmental and human health hazards, addressing the elimination of nitric oxide (NO) has become a pressing concern for modern society. Currently, electrochemical NO reduction provides a new alternative to traditional selective catalytic reduction technology under mild reaction conditions. However, the complexity and variability of products make the coverage of NO an influencing factor that needs to be investigated. Hence, this study delves into the coverage-sensitive mechanism of electrochemical NO reduction on cost-effective perovskite catalysts, using SrTiO3 as an example, through density functional theory calculations. Phase diagrams analysis reveals that the coverage range from 0.25 to 1.00 monolayer (ML) coverage is favorable for NO adsorption. Gibbs free energy results indicate that the selectivity is significantly influenced by NO coverage. NH3 is likely to be generated at low coverage, while N2O and N2 are more likely to be produced at high coverage through a dimer mechanism. Charge analysis suggests that the charge transfer and Ti-O bond strength between reactants and catalysts are crucial factors. This work not only provides deep insights into coverage-sensitive reaction mechanisms but also is a guideline towards further rational design of high-performance perovskite catalysts.

2.
Environ Technol ; : 1-14, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38379449

RESUMEN

Ammonia (NH3) and greenhouse gas (GHG) emissions are substantial contributors to C and N loss in composting. Lignite can increase N retention by absorbing NH4+ and NH3. However, the effects of co-composting on NH3 and GHG emissions in view of closing nutrient cycle are still poorly investigated. In the study, poultry litter was composted without (CK) or with lignite (T1) or dewatered lignite (T2), and their respective composts NH4+Com_CK, Com_T1, and Com_T2) were tested in a soil incubation to assess NH3 and GHG emission during composting and following soil utilization. The cumulative NH3 flux in T1 and T2 were reduced by 39.3% and 50.2%, while N2O emissions were increased by 7.5 and 15.6 times, relative to CK. The total GHG emission in T2 was reduced by 16.8% compared to CK. Lignite addition significantly increased nitrification and denitrification as evidenced by the increased abundances of amoA, amoB, nirK, and nirS. The increased reduction on NH3 emission by dewatered lignite could be attributed to reduced pH and enhanced cation exchangeable capacity than lignite. The increased N2O was related to enhanced nitrification and denitrification. In the soil incubation experiment, compost addition reduced NH3 emission by 72%∼83% while increased emissions of CO2 and N2O by 306%∼740% and 208%∼454%, compared with urea. Com_T2 strongly reduced NH3 and GHG emissions after soil amendment compared to Com_CK. Overall, dewatered lignite, as an effective additive, exhibits great potential to simultaneously mitigate NH3 and GHG secondary pollution during composting and subsequent utilization of manure composts.

3.
J Agric Food Chem ; 72(8): 4089-4099, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38353561

RESUMEN

Ten new cadinane-type sesquiterpenoids, named hibisceusins I-R (1-10), along with 14 known sesquiterpenoids (11-24), were acquired from the tainted stems of Hibiscus tiliaceus. Their structures were identified via spectroscopic analysis, one-dimensional (1D) and two-dimensional (2D) NMR, and computer-assisted structure elucidation techniques, including infrared (IR) and mass spectrometry (MS) data. Additionally, subsequent DP4/DP4+ probability methods were used to resolve 3's relative configurations by comparing their experimental values to the predicted NMR data. The absolute configurations of compounds 1-4 were measured through electronic circular dichroism (ECD) spectra. The ability of all isolates to inhibit the growth of five phytopathogenic fungi (Rhizopus stolonifer, Verticillium dahliae Kleb., Thanatephorus cucumeris, Fusarium oxysporum Schltdl., and F. oxysporum HK-27) was evaluated. Aldehydated sesquiterpenoids (1, 6-9, 11, 12, and 22) and a known sesquiterpenoid quinine (18) exhibited significant inhibitory activities against V. dahliae, T. cucumeris, F. oxysporum, and F. oxysporum HK-27 with minimum inhibitory concentration (MIC) values of 2.5-50 µg/mL, but all isolates remained inactive against R. stolonifer. Moreover, the effects of the isolates on the mycelial morphology were watched through scanning electron microscopy. This study revealed that aldehydated cadinane-type sesquiterpenoids could be used as novel antifungal molecules to develop agrochemical fungicides in plant protection.


Asunto(s)
Fungicidas Industriales , Hibiscus , Sesquiterpenos Policíclicos , Compuestos de Amonio Cuaternario , Sesquiterpenos , Fungicidas Industriales/farmacología , Hibiscus/química , Estructura Molecular , Sesquiterpenos/química
4.
J Hazard Mater ; 465: 133207, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38103300

RESUMEN

Addressing global warming necessitates innovative strategies in fossil fuel management. This study evaluates lignite, a low-rank coal with limited calorific value, exploring applications beyond its use as fuel. Utilizing Pt/TiO2 catalytic oxidation, the research aims to enhance the cadmium adsorption capacity of lignite in wastewater. Lignite, treated with 0.5% Pt/TiO2 at 125 °C for 2 h, demonstrated a threefold increase in cadmium adsorption capacity. Characterization using TGA-DSC confirmed the modification process as exothermic and self-sustainable. Spectroscopic analysis and Boehm titration revealed significant alterations in pore structure, surface area, and oxygen-containing functional groups, emphasizing the effectiveness of catalytic oxidation. Adsorption mechanisms such as complexation, cation exchange, and cation-π interactions were identified, enhancing Cd adsorption. Techniques, including the d-band model, H2-TPR, and O2-TPD, indicated that dissociative adsorption of molecular O2 and the subsequent generation of reactive oxygen species introduced additional oxygen-containing functional groups on the lignite surface. These findings provide essential strategies for the alternative use of lignite in environmental remediation, promoting sustainable resource utilization and enhancing cost-effectiveness in remediation processes. ENVIRONMENTAL IMPLICATION: This study innovates in using lignite to reduce cadmium (Cd) contamination in wastewater. Employing Pt/TiO2 catalytic oxidation, lignite is transformed, enhancing its cadmium adsorption capacity. This process, being exothermic, contributes to decreased energy consumption. The approach not only mitigates the hazardous impacts of cadmium but also aligns with sustainability by reducing greenhouse gas emissions and energy use, showcasing a multifaceted environmental advancement.

5.
Sci Total Environ ; 908: 168252, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37918729

RESUMEN

China produces more than half of global vegetables with greenhouse farms contributes approximately 35 % to the country's overall vegetable supply. The average nitrogen (N) application rate of greenhouse vegetable production exceeds 2000 kg N ha-1 yr-1, considerably contributing to global agricultural GHG emissions and reactive N (Nr) losses. Optimizing the N fertilizer utilization in greenhouse vegetable production is essential for mitigating environmental pollution and promoting sustainable development nationally and globally. In this study, we estimated the N footprint (NF), social costs (SC, which includes ecosystem and human health damage costs caused by Nr losses to the environment) and net ecosystem economic income (NEEI, which balances between the fertilizers input cost, yield profit, and social costs) of different greenhouse vegetables (tomato, pakchoi, lettuce, cabbage) under farmers' practice (FP) and reduced fertilization treatment (R). Results showed that compared with FP, the NF of tomato, pakchoi, lettuce and cabbage in the R treatment decreased by 61 %, 29 %, 46 % and 36 %, respectively, and the social costs were decreased by 60 %, 48 %, 57 % and 50 %, respectively. On the regional scale, the reduction in N fertilizer use for greenhouse vegetables in Beijing only could save the fertilizer input cost by 1-5 million USD, and avoided SC would increase by 1-14 million USD. As a result, this increased the NEEI by 2-19million USD. This study has demonstrated that adopting reduced fertilization practices represents a cost-effective measure that not only ensures yields but also decrease social costs, NF, and improve the benefits to help achieve sustainable development of greenhouse vegetable production.


Asunto(s)
Brassica , Verduras , Humanos , Ecosistema , Fertilizantes , Agricultura/métodos , Lactuca , Fertilización , Factores Socioeconómicos , China , Nitrógeno , Suelo , Óxido Nitroso/análisis
6.
J Environ Manage ; 351: 119898, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38160543

RESUMEN

Ammonia (NH3) emitted from concentrated animal feeding operations can cause environmental and health problems, and indirectly contribute to greenhouse gas emissions. Cattle feedlots are known to be large sources of NH3, but few studies have documented seasonal emissions from Australian feedlots. We conducted two field campaigns to measure NH3 emissions from an intensive beef cattle feedlot in southeast Australia, and these results were combined with previous measurements at the same feedlot to document seasonal variations in emissions and to derive annual feedlot emission factors (EFs). Emission rates were calculated with an inverse dispersion modelling (IDM) technique, based on NH3 concentrations measured at the feedlot with open-path lasers (OPLs). The average area emission rates in spring, summer, autumn and winter were 90.5, 167.4, 96.2 and 86.8 µg NH3 m-2 s-1 from the cattle pens, and 22.5, 18.1, 7.7 and 20.7 µg NH3 m-2 s-1 from the manure stockpile area, respectively. The total per-animal EFs ranged from 126.0 (autumn) to 190.2 g NH3 animal-1 d-1 (summer), representing a loss of 47.5-64.6% of the fed N. Seasonal variations in emissions were related to air temperature. Slight changes in crude protein content of the cattle diet may also have impacted seasonal variability. Taking seasonal variations into consideration, the average feedlot EF was 160.4 g NH3 animal-1 d-1, with 90% of the emissions coming from the cattle pens. Extrapolating the EF to all feedlot cattle in the country, the direct NH3 emissions from Australian feedlots amount to 65.2 Gg NH3 annually, or 3.7% of the national total. Our study benchmarks seasonal and annual EFs and N losses for Australian commercial feedlots, and provides a baseline for extrapolating the impacts of mitigation efforts.


Asunto(s)
Amoníaco , Gases de Efecto Invernadero , Animales , Bovinos , Victoria , Amoníaco/análisis , Estaciones del Año , Estiércol/análisis
8.
Waste Manag ; 168: 440-451, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393881

RESUMEN

Hydrothermal carbonization (HTC) technology is an emerging technology for the disposal of manure-based wet wastes. However, the effects of manure-derived hydrochar inputs to agricultural soils on nitrogen (N) and phosphorus (P) morphology and conversion in soil-water systems remain largely unexplored. In this study, pig and cattle manure (PM and CM), and their derived hydrochar (PCs and CCs) were applied to agricultural soils, with changes in nutrient morphology and enzyme activities related to N and P transformation in the soil-water systems observed through flooded incubation experiments. The results showed that floodwater ammonia N concentrations were reduced by 12.9-29.6% for PCs relative to PM, and 21.6-36.9% for CCs relative to CM, respectively. Moreover, floodwater total P concentrations of PCs and CCs were reduced by 11.7-20.7% relative to PM and CM. Soil enzyme activities closely related to N and P transformations in the soil-water system responded differently to manure and manure-derived hydrochar application. Compared to manure, the application of manure-derived hydrochar inhibited soil urease and acid phosphatase activity by up to 59.4% and 20.3%, respectively, whereas it had significant promotion effects on soil nitrate reductase (∼69.7%) and soil nitrite reductase (∼64.0%). The products of manure after HTC treatments have the characteristics of organic fertilizers, and the fertilization effects of PCs are more prominent than CCs, which are subject to further verification in field trials. Our findings improve the current understanding of manure-derived organic matter affecting N and P conversions in soil-water systems and the risk for non-point source pollution.


Asunto(s)
Estiércol , Suelo , Animales , Porcinos , Bovinos , Nitrógeno/análisis , Fósforo , Agricultura , Fertilizantes
9.
Horm Metab Res ; 55(9): 585-591, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37500084

RESUMEN

To study risk factors for central lymph node metastasis (CLNM) in papillary thyroid cancer (PTC) using the Chinese Thyroid Imaging Reporting and Data System (C-TIRADS). We retrospectively analysed patients who underwent PTC surgery and central lymph node dissection at First People's Hospital of Foshan City. The clinical and ultrasonic data of the patients from 1150 cases were analysed by multivariate regression to evaluate the correlation between grayscale ultrasound (US) features, C-TIRADS score, and the classification of thyroid nodules and CLNM of PTCs. The C-TIRADS score was 3.0±1.0 in the CLNM group, which was higher than that in the non-CLNM group (p<0.001). Sex (male) (OR=1.586, 95% CI 1.232-2.042, p<0.001), age (≤45 years) (OR=1.508, 95% CI 1.184-1.919, p=0.001), location of nodes (lower pole) (OR=2.193, 95% CI 1.519-3.166, p<0.001), number (multifocal) (OR=2.204, 95% CI 1.227-2.378, p<0.001), microcalcification (OR=1.610, 95% CI 2.225-4.434, p=0.002), extrathyroidal extension (OR=2.204, 95% CI 1.941-3.843, p<0.001), maximum diameter of nodule (≥20 mm) (OR=3.211, 95% CI 2.337-4.411, p<0.001), and C-TIRADS score (OR=1.356, 95% CI 1.204-1.527, p<0.001) were PTC in independent risk factors for CLNM. The C-TIRADS score of PTC combined with the location, number, size, and ultrasound features of the lesion and the patient's sex and age are important in predicting whether they present with CLNM and provide a reference basis for the clinical formulation of a reasonable surgical treatment plan.


Asunto(s)
Neoplasias de la Tiroides , Humanos , Masculino , Persona de Mediana Edad , Cáncer Papilar Tiroideo/secundario , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/cirugía , Neoplasias de la Tiroides/patología , Estudios Retrospectivos , Metástasis Linfática , Factores de Riesgo
10.
Colloids Surf B Biointerfaces ; 228: 113392, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290198

RESUMEN

Herein, a nonreversible heat-induced supramolecular gel based on natural products was reported for the first time. This natural triterpenoid, fupenzic acid (FA), isolated from the roots of Rosa laevigata, was discovered to be capable of forming supramolecular gel spontaneously in 50 % ethanol-water solution induced by heating. Distinguished from the common thermosensitive gels, the FA-gel showed a distinctive nonreversible phase transition from the liquid to gel state upon heating. In this work, the entire gelation process of FA-gel induced by heating was recorded digitally by microrheology monitor. And a unique heat-induced gelation mechanism based on self-assembled FA has been proposed by using various experimental methods and molecular dynamics (MD) simulation. Its excellent injectability and stability were also demonstrated. Furthermore, the FA-gel had been evaluated to exhibit better anti-tumor activity and higher biosafety comparing with its equivalent free-drug, which opened up a new possibility to reinforce antitumor efficacy by using natural product gelator originated from traditional Chinese medicine (TCM) without any complicated chemical modifications.


Asunto(s)
Calor , Geles/química , Transición de Fase
11.
Water Res X ; 19: 100184, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37274752

RESUMEN

As the wastewater sector moves towards achieving net zero greenhouse gas (GHG) emissions, quantifying and understanding fugitive emissions from various sewage treatment steps is crucial for developing effective GHG abatement strategies. Methane (CH4) emissions from a sludge drying pan (SDP) were measured at a wastewater treatment plant in Australia for more than a year, using a micrometeorological technique paired with open-path lasers. The emission rate was tightly associated with sludge additions, climatology, and operational processes. The mean emission rate during the 90 weeks after initial sludge addition was 2.3 (± 0.8) g m-2 d-1, with cumulative emissions of approximately 32 t of CH4. A dynamic temporal pattern of emissions was observed, highlighting the importance of continuous (or near-continuous) measurements for quantifying SDP emissions. A Methane Correction Factor (MCF) expressed as a fraction of the measured chemical oxygen demand of the sludge, was determined to be 0.17 after 63 weeks (the median operational cycle duration at the facility). This is broadly consistent with, albeit slightly less than, the IPCC default value of 0.2 for shallow anaerobic lagoons. These emission measurements will support wastewater utilities that employ open air sludge drying processes to develop effective GHG abatement strategies.

12.
J Colloid Interface Sci ; 646: 129-140, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37187046

RESUMEN

Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 µmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.

13.
Microorganisms ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838227

RESUMEN

Globally, tomato is the second most cultivated vegetable crop next to potato, preferentially grown in temperate climates. Processing tomatoes are generally produced in field conditions, in which soilborne pathogens have serious impacts on tomato yield and quality by causing diseases of the tomato root system. Major processing tomato-producing countries have documented soilborne diseases caused by a variety of pathogens including bacteria, fungi, nematodes, and oomycetes, which are of economic importance and may threaten food security. Recent field surveys in the Australian processing tomato industry showed that plant growth and yield were significantly affected by soilborne pathogens, especially Fusarium oxysporum and Pythium species. Globally, different management methods have been used to control diseases such as the use of resistant tomato cultivars, the application of fungicides, and biological control. Among these methods, biocontrol has received increasing attention due to its high efficiency, target-specificity, sustainability and public acceptance. The application of biocontrol is a mix of different strategies, such as applying antagonistic microorganisms to the field, and using the beneficial metabolites synthesized by these microorganisms. This review provides a broad review of the major soilborne fungal/oomycete pathogens of the field processing tomato industry affecting major global producers, the traditional and biological management practices for the control of the pathogens, and the various strategies of the biological control for tomato soilborne diseases. The advantages and disadvantages of the management strategies are discussed, and highlighted is the importance of biological control in managing the diseases in field processing tomatoes under the pressure of global climate change.

14.
Biomed Rep ; 18(2): 16, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36776581

RESUMEN

Depression and anxiety are common diseases that endanger the physical and mental health of individuals. Agarwood incense inhalation has been used as a traditional Chinese medicine for relaxation and to improve sleep for centuries. In a previous study by the authors it was demonstrated that agarwood essential oil (AEO) injection exerted anxiolytic and antidepressant effects. Therefore the present study further investigated the anxiolytic and antidepressant effects of AEO inhalation on anxiolytic mice induced by M-chlorophenylpiperazine and depressive mice induced by chronic unpredictable mild stress. The results demonstrated that AEO exerted a significant anxiolytic effect, whereby autonomous movements were inhibited during the light dark exploration test and open field test. Furthermore, the tail suspension test and the forced swimming test demonstrated that AEO also exerted an antidepressant effect, whereby the immobility times were decreased. Moreover, AEO was determined to increase the levels of 5-hydroxytryptamine, γ-aminobutyric acid (GABA) A receptor (GABAA) and glutamate (Glu) in anxiolytic mice and inhibit the levels of GABAA and Glu in depressive mice. Further investigations into how AEO affected the Glu/GABA system demonstrated that AEO markedly increased the protein expression levels of GABA transaminase (GABAT), glutamate metabotropic receptor 5 (GRM5), glutamate ionotropic receptor AMPA type subunit 1 (GluR1) and vesicular glutamate transporter 1 (VGluT1). Furthermore, AEO reduced the expression levels of GABAT, glutamate ionotropic receptor NMDA type subunit 2B and GRM5, and enhanced the expression levels of GluR1 and VGluT1. These results demonstrated that AEO potentially possesses antianxiety and antidepressant properties. The present study determined that the mechanism was related to the regulation of Glu/GABA neurotransmitter system homeostasis.

15.
Environ Sci Technol ; 57(7): 2928-2938, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36752384

RESUMEN

Copper-loaded ceria (Cu/CeO2) catalysts have become promising for the catalytic oxidation of industrial CO emissions. Since their superior redox property mainly arises from the synergistic effect between Cu and the CeO2 support, the dispersion state of Cu species may dominate the catalytic performance of Cu/CeO2 catalysts: the extremely high or low dispersity is disadvantageous for the catalytic performance. The nanoparticle catalysts usually present few contact sites, while the single-atom catalysts tend to be passivated due to their relatively single valence state. To achieve a suitable dispersion state, we synthesized a superior Cu/CeO2 catalyst with Cu atomic clusters, realizing high atomic exposure and unit atomic activity simultaneously via favorable electron interaction and an anchoring effect. The catalyst reaches a 90% CO conversion at 130 °C, comparable to noble-metal catalysts. According to combined in situ spectroscopy and density functional theory calculations, the superior CO oxidation performance of the Cu atomic cluster catalyst results from the joint efforts of effective adsorption of CO at the electrophilic sites, the CO spillover phenomenon, and the efficient bicarbonate pathway triggered by hydroxyl. By providing a superior atomic cluster catalyst and uncovering the catalytic oxidation mechanism of Cu-Ce dual-active sites, our work may enlighten future research on industrial gaseous pollutant removal.


Asunto(s)
Cobre , Electrones , Oxidación-Reducción , Adsorción , Catálisis
17.
Inorg Chem ; 62(5): 2415-2424, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36683338

RESUMEN

Structural and functional expansion of metal-organic frameworks (MOFs) is fundamentally important because it not only enriches the structural chemistry of MOFs but also facilitates the full exploration of their application potentials. In this work, by employing a dual-site functionalization strategy to lock the ligand conformation, we designed and synthesized a pair of biphenyl tricarboxylate ligands bearing dimethyl and dimethoxy groups and fabricated their corresponding framework compounds through coordination with copper(II) ions. Compared to the monofunctionalized version, introduction of two side groups can significantly fix the ligand conformation, and as a result, the dual-methoxy compound exhibited a different network structure from the mono-methoxy counterpart. Although only one almost orthogonal conformation was observed for the two ligands, their coordination framework compounds displayed distinct topological structures probably due to different solvothermal conditions. Significantly, with a hierarchical cage-type structure and good hydrostability, the dimethyl compound exhibited promising practical application value for industrially important C2H2 separation and purification, which was comprehensively demonstrated by equilibrium/dynamic adsorption measurements and the corresponding Clausius-Clapeyron/IAST/DFT theoretical analyses.

18.
Nature ; 613(7942): 77-84, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36600068

RESUMEN

Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30-70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10-30% and 10-80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.


Asunto(s)
Producción de Cultivos , Productos Agrícolas , Contaminación Ambiental , Nitrógeno , Suelo , Humanos , Análisis Costo-Beneficio , Ecosistema , Fertilizantes/análisis , Nitrógeno/análisis , Suelo/química , Contaminación Ambiental/economía , Contaminación Ambiental/prevención & control , Producción de Cultivos/economía , Producción de Cultivos/métodos , Producción de Cultivos/tendencias
19.
Environ Technol ; 44(20): 2983-2994, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35225754

RESUMEN

HighlightsVictorian lignites were assessed for their NH4+ retention capacity using adsorption isotherms and 15N tracing.NH4+ adsorption capacity of lignites increased (up to 3-fold) with pH, especially from pH 5 to 7.Biological immobilisation did not play a substantial role in the NH4+ retention capacity of the lignites.pH-dependent NH4+ adsorption was the dominant means by which lignite retained NH4+.


Asunto(s)
Compuestos de Amonio , Carbón Mineral , Nitrógeno , Estiércol , Adsorción
20.
J Colloid Interface Sci ; 629(Pt B): 1027-1038, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36209566

RESUMEN

S-scheme heterojunctions hold great potential for CO2 photoreduction into solar fuels, but their activities are severely limited by the low efficiency of interfacial charge transfer. In this work, a facile one-pot solvothermal reaction has been developed to dope Fe into flower-like In2S3/Fe3S4 hetero-microspheres (Fe-In2S3/Fe3S4 HMSs), which are demonstrated as an efficient S-scheme photocatalyst for visible-light-driven CO2 photoreduction. The doping of Fe not only reduces the bandgap of In2S3 and thus extends the optical response to the visible-light region, but also increases the densities of donors and sulfur vacancies, which leads to an elevated Fermi level (Ef). The difference of Ef between In2S3 and Fe3S4 is enlarged and their band bending at the interface is therefore enhanced, which results in promoted carriers transfer in the S-scheme pathway due to the reinforced interfacial electric field. Moreover, Fe-doped In2S3 reduces the formation energy of the *CO intermediate, which thermodynamically favors the CO evolution at the surface. As a result, the Fe-In2S3/Fe3S4 HMSs exhibit a significantly boosted CO2 photoreduction activity in comparison with bare In2S3 and Fe-In2S3 samples. This work demonstrates the great potential of heteroatom-engineered S-scheme photocatalysts for CO2 photoreduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...