Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Lymphoma Myeloma Leuk ; 24(3): e59-e66.e2, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38061959

RESUMEN

INTRODUCTION: Detection of measurable residual disease (MRD) in adults with acute lymphoblastic leukemia (ALL) is a vital biomarker in risk prediction and treatment selection. Next-generation sequencing (NGS) offers greater sensitivity relative to multiparametric flow cytometry (MFC) and may be a better predictive tool for identifying ALL patients at risk of relapse. PATIENTS AND METHODS: This single-center retrospective study compares MRD detection by NGS versus MFC in 52 adult B- and T-ALL patients treated at our institution between 2018 and 2023. Pretreatment bone marrow samples were used for assay calibration, while post-treatment MRD assessment was completed up to 4.5 months after the first complete remission (CR1) using an MRD cutoff of 10-6 for distinguishing relapse risk. RESULTS: The 2-year cumulative incidence of relapse (CIR) among patients who were MRD positive using MFC and NGS was 39.5% and 46.2%, respectively. Unlike MFC, post-CR1 MRD positivity with NGS significantly predicted CIR (HR = 9.47, P = .028). In patients who were MRD negative by MFC, low levels of MRD detected by NGS distinguished patients at high risk of relapse (HR 10.3, P = .026, 2-year CIR 51.6%). CONCLUSION: Our data suggests that assessment of post-CR1 MRD using a highly sensitive NGS assay can identify ALL patients undergoing frontline therapy at increased risk of relapse and guide the use of adjuvant therapy.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Estudios Retrospectivos , Citometría de Flujo , Enfermedad Aguda , Recurrencia , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Neoplasia Residual/diagnóstico , Neoplasia Residual/terapia , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Trasplante de Células Madre Hematopoyéticas/métodos
2.
Front Oncol ; 13: 1215524, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37700839

RESUMEN

Background: The incidence of lung cancer in the US has been decreasing but a bigger decline has been observed in men despite similar declines in tobacco use between men and women. Multiple theories have been proposed, including exposure to exogenous estrogens. Our study seeks to understand the relationship between hormone receptors (HR), gender, and the genomic landscape of non-small lung cancer (NSCLC). Methods: 3,256 NSCLC tumor samples submitted for molecular profiling between 2013-2018 were retrospectively identified and assessed for HR expression. Hormone receptor (HR+) was defined as ≥ 1% nuclear staining of estrogen receptor-alpha (ER-a) or progesterone receptor (PR) by immunohistochemistry. DNA sequencing by NGS included cases sequenced by the Illumina MiSeq hot spot 47 gene panel (n=2753) and Illumina NextSeq 592 gene panel (n=503). An adjusted p-value (q-value) <0.05 was determined significant. Results: HR+ was identified in 18.3% of NSCLC. HR+ occurred more commonly in women compared to men (19.6% vs 11.4%, p <0.0001, q <0.0001). EGFR mutations occurred more commonly in HR+ NSCLC than HR- NSCLC (20.2% vs. 14.6%, p = 0.002, q=0.007). Overall, men with EGFR mutations were affected by HR status with a higher prevalence in HR+ NSCLC while such differences were not seen in women. However, in women ages ≤45, there was a trend towards greater prevalence HR+ NSCLC (25.25% vs. 11.32%, q= 0.0942) and 10/25 (40.0%) of HR+ cases in young women were found to be EGFR mutated. KRAS mutations and ALK+ IHC expression occurred more in HR+ NSCLC whereas TP53 mutations occurred more in HR- NSCLC. Conclusions: Women were more likely to have HR+ NSCLC than men and EGFR and KRAS mutations occurred more commonly in HR+ NSCLC. Additional studies with more strict inclusion criteria for HR+ are warranted to see if there is benefit to targeting HR in these subgroups.

3.
Blood Adv ; 6(16): 4675-4690, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675517

RESUMEN

Multiplexed immune cell profiling of the tumor microenvironment (TME) in cancer has improved our understanding of cancer immunology, but complex spatial analyses of tumor-immune interactions in lymphoma are lacking. Here, we used imaging mass cytometry (IMC) on 33 cases of diffuse large B-cell lymphoma (DLBCL) to characterize tumor and immune cell architecture and correlate it to clinicopathological features such as cell of origin, gene mutations, and responsiveness to chemotherapy. To understand the poor response of DLBCL to immune checkpoint inhibitors (ICI), we compared our results to IMC data from Hodgkin lymphoma, a cancer highly responsive to ICI, and observed differences in the expression of PD-L1, PD-1, and TIM-3. We created a spatial classification of tumor cells and identified tumor-centric subregions of immune activation, immune suppression, and immune exclusion within the topology of DLBCL. Finally, the spatial analysis allowed us to identify markers such as CXCR3, which are associated with penetration of immune cells into immune desert regions, with important implications for engineered cellular therapies. This is the first study to integrate tumor mutational profiling, cell of origin classification, and multiplexed immuno-phenotyping of the TME into a spatial analysis of DLBCL at the single-cell level. We demonstrate that, far from being histopathologically monotonous, DLBCL has a complex tumor architecture, and that changes in tumor topology can be correlated with clinically relevant features. This analysis identifies candidate biomarkers and therapeutic targets such as TIM-3, CCR4, and CXCR3 that are relevant for combination treatment strategies in immuno-oncology and cellular therapies.


Asunto(s)
Enfermedad de Hodgkin , Linfoma de Células B Grandes Difuso , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Linfoma de Células B Grandes Difuso/patología , Análisis Espacial , Microambiente Tumoral/genética
4.
Expert Rev Mol Diagn ; 19(11): 1031-1041, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31482746

RESUMEN

Introduction: Liquid biopsies have attracted considerable attention as potential diagnostic, prognostic, predictive, and screening assays in oncology. The term liquid biopsies include circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in the blood. While many liquid biopsy technologies are under active investigation, relatively few liquid biopsy assays have been proven to serve as a diagnostic surrogate for biopsies of metastatic disease as predictive biomarkers to guide the selection of therapy in the clinic. Areas covered: The objective of this review is to highlight the status of liquid biopsies in solid tumors in the oncology literature with attention to proven utility as diagnostic surrogates for macrometastases. Expert opinion: Carefully designed clinical-translational studies are needed to establish the diagnostic accuracy and clinical utility of liquid biopsy biomarkers in oncology. Investigators must fully consider relevant pre-analytical variables, assay sensitivity, bioinformatics considerations as well as the clinical utility of rare event profiling in the context of the normal blood background. Future liquid biopsy research should address the concern that not all DNA mutations are expressed and should provide the means to discover potential therapeutic targets in metastatic patients via a minimally invasive blood draw.


Asunto(s)
Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/sangre , Neoplasias/diagnóstico , Biomarcadores de Tumor/normas , ADN Tumoral Circulante/normas , Estudios Clínicos como Asunto , Estudios de Evaluación como Asunto , Humanos , Neoplasias/sangre , Células Neoplásicas Circulantes/metabolismo
5.
Mol Biol Cell ; 23(10): 1838-45, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22456511

RESUMEN

Centrioles organize the centrosome, and accurate control of their number is critical for the maintenance of genomic integrity. Centrioles duplicate once per cell cycle, and duplication is coordinated by Polo-like kinase 4 (Plk4). We previously demonstrated that Plk4 accumulation is autoregulated by its own kinase activity. However, loss of heterozygosity of Plk4 in mouse embryonic fibroblasts has been proposed to cause cytokinesis failure as a primary event, leading to centrosome amplification and gross chromosomal abnormalities. Using targeted gene disruption, we show that human epithelial cells with one inactivated Plk4 allele undergo neither cytokinesis failure nor increase in centrosome amplification. Plk4 is shown to localize exclusively at the centrosome, with none in the spindle midbody. Substantial depletion of Plk4 by small interfering RNA leads to loss of centrioles and subsequent spindle defects that lead to a modest increase in the rate of cytokinesis failure. Therefore, Plk4 is a centriole-localized kinase that does not directly regulate cytokinesis.


Asunto(s)
Centriolos/metabolismo , Citocinesis , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Centrosoma/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiología , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Ratones , Microtúbulos/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Transporte de Proteínas , Interferencia de ARN , Huso Acromático/metabolismo , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...