Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662218

RESUMEN

Background: Port wine birthmark (PWB) is a congenital vascular malformation resulting from developmentally defective endothelial cells (ECs). Developing clinically relevant disease models for PWB studies is currently an unmet need. Objective: Our study aims to generate PWB-derived induced pluripotent stem cells (iPSCs) and iPSC-derived ECs that preserve disease-related phenotypes. Methods: PWB iPSCs were generated by reprogramming lesional dermal fibroblasts and differentiated into ECs. RNA-seq was performed to identify differentially expressed genes (DEGs) and enriched pathways. The functional phenotypes of iPSC-derived ECs were characterized by capillary-like structure (CLS) formation in vitro and Geltrex plug-in assay in vivo . Results: Human PWB and control iPSC lines were generated through reprogramming of dermal fibroblasts by introducing the "Yamanaka factors" (Oct3/4, Sox2, Klf4, c-Myc) into them; the iPSCs were successfully differentiated into ECs. These iPSCs and their derived ECs were validated by expression of a series of stem cell and EC biomarkers, respectively. PWB iPSC-derived ECs showed impaired CLS in vitro with larger perimeters and thicker branches as compared to control iPSC-derived ECs. In the plug-in assay, perfused human vasculature formed by PWB iPSC- derived ECs showed bigger perimeters and greater densities than those formed by control iPSC- derived ECs in severe combined immune deficient (SCID) mice. The transcriptome analysis showed that dysregulated pathways of stem cell differentiation, Hippo, Wnt, and focal adhesion persisted through differentiation of PWB iPSCs to ECs. Functional enrichment analysis showed that Hippo and Wnt pathway-related PWB DEGs are enriched for vasculature development, tube morphology, endothelium development, and EC differentiation. Further, members of the zinc finger (ZNF) gene family were overrepresented among the DEGs in PWB iPSCs. ZNF DEGs confer significant functions in transcriptional regulation, chromatin remodeling, protein ubiquitination, and retinoic acid receptor signaling. Furthermore, NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were dysregulated in PWB ECs as readouts of impaired differentiation. Conclusions: PWB iPSC-derived ECs render a novel and clinically-relevant disease model by retaining pathological phenotypes. Our data demonstrate multiple pathways, such as Hippo and Wnt, NF-kappa B, TNF, MAPK, and cholesterol metabolism, are dysregulated, which may contribute to the development of differentiation-defective ECs in PWB. Bulleted statements: What is already known about this topic?: Port Wine Birthmark (PWB) is a congenital vascular malformation with an incidence rate of 0.1 - 0.3 % per live births.PWB results from developmental defects in the dermal vasculature; PWB endothelial cells (ECs) have differentiational impairments.Pulse dye laser (PDL) is currently the preferred treatment for PWB; unfortunately, the efficacy of PDL treatment of PWB has not improved over the past three decades.What does this study add?: Induced pluripotent stem cells (iPSCs) were generated from PWB skin fibroblasts and differentiated into ECs.PWB ECs recapitulated their pathological phenotypes such as forming enlarged blood vessels in vitro and in vivo.Hippo and Wnt pathways were dysregulated in PWB iPSCs and ECs.Zinc-finger family genes were overrepresented among the differentially expressed genes in PWB iPSCs.Dysregulated NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were enriched in PWB ECs.What is the translational message?: Targeting Hippo and Wnt pathways and Zinc-finger family genes could restore the physiological differentiation of ECs.Targeting NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways could mitigate the pathological progression of PWB.These mechanisms may lead to the development of paradigm-shifting therapeutic interventions for PWB.

2.
Metabolites ; 13(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37755263

RESUMEN

Port Wine Birthmarks (PWBs) are a congenital vascular malformation on the skin, occurring in 1-3 per 1000 live births. We have recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, and so we aim to explore them in this study. Metabolites were separated by ultra-performance liquid chromatography and screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant, multivariate, and univariate analyses were used to identify differential metabolites (DMs). KEGG analysis was used to determine the enrichment of metabolic pathways. A total of 339 metabolites was identified. There were 22 DMs, among which nine were downregulated-including sphingosine-and 13 were upregulated, including glutathione in PWB iPSCs, as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and the downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key molecules associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skin. Other significantly affected metabolic pathways in PWB iPSCs included pentose and glucuronate interconversions; amino sugar and nucleotide sugars; alanine, aspartate, and glutamate; arginine, purine, D-glutamine, and D-glutamate; arachidonic acid, glyoxylate, and dicarboxylate; nitrogen, aminoacyl-tRNA biosynthesis, pyrimidine, galactose, ascorbate, and aldarate; and starch and sucrose. Our data demonstrated that there were perturbations in sphingolipid and cellular redox homeostasis in PWB vasculatures, which could facilitate cell survival and pathological progression. Our data implied that the upregulation of glutathione could contribute to laser-resistant phenotypes in some PWB vasculatures.

3.
Int J Mol Sci ; 24(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37762687

RESUMEN

Endogenous hydrogen sulfide (H2S) produced by cystathionine ß-synthase (CBS) and cystathionine-γ lyase (CSE) has emerged as a novel uterine vasodilator contributing to pregnancy-associated increases in uterine blood flow, which safeguard pregnancy health. Uterine artery (UA) H2S production is stimulated via exogenous estrogen replacement and is associated with elevated endogenous estrogens during pregnancy through the selective upregulation of CBS without altering CSE. However, how endogenous estrogens regulate uterine artery CBS expression in pregnancy is unknown. This study was conducted to test a hypothesis that endogenous estrogens selectively stimulate UA CBS expression via specific estrogen receptors (ER). Treatment with E2ß (0.01 to 100 nM) stimulated CBS but not CSE mRNA in organ cultures of fresh UA rings from both NP and P (gestational day 20, GD20) rats, with greater responses to all doses of E2ß tested in P vs. NP UA. ER antagonist ICI 182,780 (ICI, 1 µM) completely attenuated E2ß-stimulated CBS mRNA in both NP and P rat UA. Subcutaneous injection with ICI 182,780 (0.3 mg/rat) of GD19 P rats for 24 h significantly inhibited UA CBS but not mRNA expression, consistent with reduced endothelial and smooth muscle cell CBS (but not CSE) protein. ICI did not alter mesenteric and renal artery CBS and CSE mRNA. In addition, ICI decreased endothelial nitric oxide synthase mRNA in UA but not in mesenteric or renal arteries. Thus, pregnancy-augmented UA CBS/H2S production is mediated by the actions of endogenous estrogens via specific ER in pregnant rats.


Asunto(s)
Cistationina betasintasa , Fulvestrant , Sulfuro de Hidrógeno , Animales , Femenino , Embarazo , Ratas , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Estrógenos/metabolismo , Fulvestrant/farmacología , Sulfuro de Hidrógeno/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba , Arteria Uterina/metabolismo
5.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503303

RESUMEN

Port Wine Birthmark (PWB) is a congenital vascular malformation in the skin, occurring in 1-3 per 1,000 live births. We recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, which we aimed to explore in this study. Metabolites were separated by ultra-performance liquid chromatography and were screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant analysis, multivariate and univariate analysis were used to identify differential metabolites (DMs). KEGG analysis was used for the enrichment of metabolic pathways. A total of 339 metabolites were identified. There were 22 DMs confirmed with 9 downregulated DMs including sphingosine and 13 upregulated DMs including glutathione in PWB iPSCs as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key factors associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skins. Our data demonstrate that there are perturbations in sphingolipid and cellular redox homeostasis in the PWB vasculature, which may facilitate cell survival and pathological progression. Our data imply that upregulation of glutathione may contribute to laser-resistant phenotypes in the PWB vasculature.

6.
Endocrinology ; 164(9)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439247

RESUMEN

Uterine artery (UA) hydrogen sulfide (H2S) production is augmented in pregnancy and, on stimulation by systemic/local vasodilators, contributes to pregnancy-dependent uterine vasodilation; however, how H2S exploits this role is largely unknown. S-sulfhydration converts free thiols to persulfides at reactive cysteine(s) on targeted proteins to affect the entire proteome posttranslationally, representing the main route for H2S to elicit its function. Here, we used Tag-Switch to quantify changes in sulfhydrated (SSH-) proteins (ie, sulfhydrome) in H2S-treated nonpregnant and pregnant human UA. We further used the low-pH quantitative thiol reactivity profiling platform by which paired sulfhydromes were subjected to liquid chromatography tandem mass spectrometry-based peptide sequencing to generate site (cysteine)-specific pregnancy-dependent H2S-responsive human UA sulfhydrome. Total levels of sulfhydrated proteins were significantly greater in pregnant vs nonpregnant human UA and further stimulated by treatment with sodium hydrosulfide. We identified a total of 360 and 1671 SSH-peptides from 480 and 1186 SSH-proteins in untreated and sodium hydrosulfide-treated human UA, respectively. Bioinformatics analyses identified pregnancy-dependent H2S-responsive human UA SSH peptides/proteins, which were categorized to various molecular functions, pathways, and biological processes, especially vascular smooth muscle contraction/relaxation. Pregnancy-dependent changes in these proteins were rectified by immunoblotting of the Tag-Switch labeled SSH proteins. Low-pH quantitative thiol reactivity profiling failed to identify low abundance SSH proteins such as KATP channels in human UA; however, immunoblotting of Tag-Switch-labeled SSH proteins identified pregnancy-dependent upregulation of SSH-KATP channels without altering their total proteins. Thus, comprehensive analyses of human UA sulfhydromes influenced by endogenous and exogenous H2S inform novel roles of protein sulfhydration in uterine hemodynamics regulation.


Asunto(s)
Sulfuro de Hidrógeno , Arteria Uterina , Embarazo , Femenino , Humanos , Arteria Uterina/metabolismo , Cisteína/metabolismo , Sulfuro de Hidrógeno/metabolismo , Útero/metabolismo
7.
J Mol Endocrinol ; 70(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476832

RESUMEN

Elevated endogenous estrogens stimulate human uterine artery endothelial cell (hUAEC) hydrogen sulfide (H2S) production by selectively upregulating the expression of H2S synthesizing enzyme cystathionine ß-synthase (CBS), but the underlying mechanisms are underdetermined. We hypothesized that CBS transcription mediates estrogen-stimulated pregnancy-dependent hUAEC H2S production. Estradiol-17ß (E2ß) stimulated CBS but not cystathionine γ-lyase (CSE) expression in pregnant human uterine artery ex vivo, which was attenuated by the estrogen receptor (ER) antagonist ICI 182,780. E2ß stimulated CBS mRNA/protein and H2S production in primary hUAEC from nonpregnant and pregnant women, but with greater responses in pregnant state; all were blocked by ICI 182,780. Human CBS promoter contains multiple estrogen-responsive elements (EREs), including one ERE preferentially binding ERα (αERE) and three EREs preferentially binding ERß (ßERE), and one full ERE (α/ßERE) and one half ERE (½α/ßERE) binding both ERα and ERß. Luciferase assays using reporter genes driven by human CBS promoter with a series of 5'-deletions identified the α/ßEREs binding both ERα and ERß (α/ßERE and ½α/ßERE) to be important for baseline and E2ß-stimulated CBS promoter activation. E2ß stimulated ERα/ERß heterodimerization by recruiting ERα to α/ßEREs and ßERE, and ERß to ßERE, α/ßEREs, and αERE. ERα or ERß agonist alone trans-activated CBS promoter, stimulated CBS mRNA/protein and H2S production to levels comparable to that of E2ß-stimulated, while ERα or ERß antagonist alone abrogated E2ß-stimulated responses. E2ß did not change human CSE promoter activity and CSE mRNA/protein in hUAEC. Altogether, estrogen-stimulated pregnancy-dependent hUAEC H2S production occurs by selectively upregulating CBS expression via ERα/ERß-directed gene transcription.


Asunto(s)
Cistationina betasintasa , Receptor alfa de Estrógeno , Receptor beta de Estrógeno , Sulfuro de Hidrógeno , Receptores de Estrógenos , Femenino , Humanos , Embarazo , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Células Endoteliales/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/farmacología , Estrógenos/metabolismo , Fulvestrant/metabolismo , Receptores de Estrógenos/metabolismo , ARN Mensajero/genética , Arteria Uterina/metabolismo , Sulfuro de Hidrógeno/metabolismo
8.
Obstet Gynecol Res ; 6(4): 309-316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288009

RESUMEN

Hydrogen sulfide (H2S) is a cardiovascular signaling molecule that causes vasodilation in vascular smooth muscle cells, but its mechanism is unclear. We examined how H2S affects mesenteric and uterine arteries without endothelium in nonpregnant and pregnant rats and the underlying mechanisms. H2S donors GYY4137 and NaHS relaxed uterine arteries more than mesenteric arteries in both pregnant and nonpregnant rats. GYY4137 and NaHS caused greater relaxation in the uterine artery of pregnant versus nonpregnant rats. High extracellular K+ abolished NaHS relaxation in pregnant uterine arteries, indicating potassium channel involvement. NaHS relaxation was unaffected by voltage-gated potassium channel blockers, reduced by ATP-sensitive potassium channel blockers, and abolished by calcium-activated potassium (BKCa) channel blockers. Thiol-reductant dithiothreitol also prevented NaHS relaxation. Thus, H2S has region-specific and pregnancy-enhanced vasodilator effects in the uterine arteries, mainly mediated by BKCa channels and sulfhydration.

9.
PLoS One ; 17(4): e0267826, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35486619

RESUMEN

Angiogenesis is vital during pregnancy for remodeling and enhancing vasodilation of maternal uterine arteries, and increasing uterine blood flow. Abnormal angiogenesis is associated with decreased uteroplacental blood flow and development of pregnancy disorders such as gestational hypertension, preeclampsia, fetal growth restriction, preterm delivery, stillbirth, and miscarriage. The mechanisms that contribute to normal angiogenesis remain obscure. Our previous studies demonstrated that expression of the angiotensin type 2 receptor (AT2R) is increased while the angiotensin type 1 receptor (AT1R) is unchanged in the endothelium of uterine arteries, and that AT2R-mediated pregnancy adaptation facilitates enhanced vasodilation and uterine arterial blood flow. However, the role of AT2R in regulating angiogenesis during pregnancy has never been studied. This study examines whether or not AT2R activation induces angiogenesis and, if so, what mechanisms are involved. To this end, we used primary human uterine artery endothelial cells (hUAECs) isolated from pregnant and nonpregnant women undergoing hysterectomy. The present study shows that Compound 21, a selective AT2R agonist, induced proliferation of pregnant-hUAECs, but not nonpregnant-hUAECs, in a concentration-dependent manner, and that this C21-induced mitogenic effect was blocked by PD123319, a selective AT2R antagonist. The mitogenic effects induced by C21 were inhibited by blocking JNK-but not ERK, PI3K, and p38-signaling pathways. In addition, C21 concentration dependently increased cell migration and capillary-like tube formation in pregnant-hUAECs. The membrane-based antibody array showed that C21 increased expression of multiple angiogenic proteins, including EGF, bFGF, leptin, PLGF, IGF-1, and angiopoietins. Our qPCR analysis demonstrates that C21-induced increase in expression of these angiogenic proteins correlates with a proportional increase in mRNA expression, indicating that AT2R activates angiogenic proteins at the transcriptional level. In summary, the present study shows that AT2R activation induces angiogenesis of hUAECs in a pregnancy-specific manner through JNK-mediated pathways with associated transcriptional upregulation of multiple proangiogenic proteins.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Embarazo , Receptor de Angiotensina Tipo 2 , Arteria Uterina , Proteínas Angiogénicas/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Femenino , Humanos , Imidazoles , Recién Nacido , Embarazo/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo , Sulfonamidas , Tiofenos , Arteria Uterina/citología , Arteria Uterina/metabolismo
10.
Matern Fetal Med ; 4(1): 52-60, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35072088

RESUMEN

Normal pregnancy is associated with dramatically increased estrogen biosynthesis whose role is believed to raise uterine blood flow to facilitate the bi-directional maternal-fetal exchanges of gases (O2 and CO2), to deliver nutrients, and exhaust wastes to support fetal development and survival. Constrained uterine blood flow in pregnancy is a leading cause of preeclampsia with fetal growth restriction, rendering investigations of uterine hemodynamics to hold a high promise to inform pathways as targets for therapeutic interventions for preeclampsia. The mechanisms of estrogen-induced uterine vasodilation in pregnancy have long been attributed to enhanced endothelium production of nitric oxide, but clinical trials targeting this pathway that dominates uterine hemodynamics have achieved no to little success. Emerging evidence has recently shown a novel proangiogenic vasodilatory role of hydrogen sulfide in regulating uterine hemodynamics in pregnancy and preeclampsia, provoking a new field of perinatal research in searching for alternative pathways for pregnancy disorders especially preeclampsia and intrauterine growth restriction. This minireview is intended to summarize the nitric oxide pathway and to discuss the emerging hydrogen sulfide pathway in modulating estrogen-induced uterine vasodilation in pregnancy and preeclampsia.

11.
Artículo en Inglés | MEDLINE | ID: mdl-36843622

RESUMEN

Sulfoconjugation is the major pathway for thyroid hormone (TH) metabolism, converting T4 to inactive metabolites, T4S, rT3S, and T3S in fetus, via sulfotransferases (SULT) and type 3 deiodinase in gestation. Consistent with high production rate of T4S and rT3S, there are high serum sulfated iodothyronine analogs, including T4S, T3S, rT3S, and 3,3'-T2S (T2S), in ovine and human fetal and preterm infants. Fetal TH metabolic pathways predict T2S as the major TH metabolite in the fetus. Since maternal T2S appears to be quantitatively derived from fetal T3 (the active TH), the amount of T2S in the maternal compartment correlates with fetal thyroid function in sheep. In humans, maternal serum contains high levels of radioimmunoassayable T2S; however, it displays as a peak adjacent to but unidentical to synthetic T2S on HLPC and we named it the W-Compound. Levels of W-Compound increase during pregnancy and peak as high as 20-fold to that of nonpregnant women. Maternal serum levels of W-Compound significantly correlate with fetal T4 and W-compound concentrations but not maternal serum T4 in euthyroid or hyperthyroid women, showing a distinct difference between fetal and maternal in TH metabolism. Fetal T2S is actively transferred to the mother via placenta and the quantity of T2S or its metabolite (W-Compound) in maternal compartment reflects fetal thyroid function. Thus, maternal serum W-Compound may be a biomarker for monitoring fetal thyroid function in utero, although more investigations are needed to determine if it can be used as an alternative strategy for screening/managing congenital hypothyroidism due to dysregulated thyroid hormone metabolism.

13.
J Med Res Surg ; 2(2)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34318305

RESUMEN

OBJECTIVES: The aim of this study was to determine if lysyl oxidase-like 1 (LOXL1) and Fibulin-5 (Fib-5), two crucial proteins in the elastin metabolism pathway, are detectable in the vaginal secretions of women with and without pelvic organ prolapse (POP). We then sought to quantify levels of these proteins in relation to prolapse. METHODS: Vaginal secretions were obtained from 48 subjects (13 (27.1%) without and 35 (72.9%) with POP-Q Stage 2-4 prolapse). Eleven (22.9%) subjects were premenopausal and 37 (77.1%) were postmenopausal. Presence of LOXL-1 and Fibulin-5 within specimens were first identified via western blotting. Enzyme-Linked Immunosorbent Assays specific for LOXL1 and Fibulin-5 were conducted to quantify total protein secretion. RESULTS: LOXL1 was detected in 45/48 (93.8%) and Fibulin-5 was seen in 24/48 (50%) of subjects. LOXL1 values were lower in women without prolapse (13.3 ng/100 mg median, 24.4 IQR) vs. those with prolapse (26.4 ng/100 mg, 102.2 IQR). On multivariate analysis controlling for age, women with prolapse had a 544% (p=0.0042 higher LOXL1 protein level compared to those without. There was no significant differences in LOXL1 or Fibulin-5 protein detection with relation to menopausal status in bivariate analysis. CONCLUSIONS: This is the first published report of non-invasively measuring urogenital LOXL1 and Fibulin-5. In vaginal secretions, LOXL1 protein is higher in subjects with POP than those without.

14.
Endocrinol Disord ; 5(7): 01-6, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35098142

RESUMEN

OBJECTIVE: Serum 3, 3',5-triiodothyronine (T3) remains low in near-term fetus to prevent the growing fetus from undue exposure to its active catabolic effect in mammals. The present study was undertaken to gain insight in the role of placenta in T3 metabolism, fetal to maternal transfer of T3, and its metabolites by in situ placenta perfusion with outer-ring labeled [125I]-T3 in pregnant guinea pig, a species showing increased sulfated 3, 3'-diiodothyronine (T2S) levels in maternal serum in late pregnancy (term = 65 days), similarly to humans in pregnancy. MATERIALS AND METHODS: One-pass placenta perfusions performed on pregnant guinea pigs were studied between 58 - 65 days of gestation. In two separate experiments, the umbilical artery of the guinea pig placenta was perfused in situ at 37°C with outer-ring labeled [125I]-T3. Maternal sera and umbilical effluents were obtained for analysis at the end of a 60-minute perfusion, when the steady-state levels of radioactivity were reached in the placenta effluent after 30-minute. RESULTS: Sulfated [125I]-T2S was readily detected in the maternal serum as the major metabolite of T3 following the perfusion of placenta with [125I]-T3, suggesting that placental inner-ring deiodinase and sulfotransferase may play an important role in fetal T3 homeostasis and in the fetal to maternal transfer of sulfated iodothyronine metabolites. CONCLUSIONS: The expression of type 3 deiodinase (D3) and thyroid hormone sulfotransferase activity in placenta may play an important role to protect developing organs against undue exposure to active thyroid hormone in late gestation in the fetus. The combined activities of D3 and sulfotransferase promoted a placental transfer of T2S into maternal circulation. The maternal circulation of T2S is fetal T3 in origin and its role as a fetal thyroid function biomarker deserves further evaluations and studies.

15.
Reprod Domest Anim ; 56(1): 142-152, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33174231

RESUMEN

The aims of the present study were to determine uterine, vaginal and placental blood flows by Doppler ultrasound cross-buffalo gestation and to evaluate the relationships among reproductive Doppler parameters and serum metabolic parameters as well as oxidative stress. Uterine (UA) and vaginal (VA) arteries were scanned every month, and placentome was scanned from month 4 till 8 in gestation. Time-averaged maximum velocity (TAMV), pulsatility index (PI), resistance index (RI), systolic/diastolic ratio (SD) and arterial diameter (AD) were used for accessing UA and VA hemodynamics. Time-averaged maximum velocity positively correlated with and AD, and both negatively correlated with their PI, RI and SD in UA and VA. TAMV and AD increased constantly in pregnancy, with maximum increase in months 4 and 9. Pulsatility index, RI and AD of UA decreased between months 4 and 9, while PI, RI and AD of VA decreased between months 5 and 9 and then increased in month 10 in pregnancy. Time-averaged maximum velocity of placentome blood flow increased exponentially from months 4 to 8, but decreased at the last two months in pregnancy. Serum lipids were significantly higher in the first month compared to all other months, while glucose was significantly lower in months 9 and 10. Malondialdehyde increased from month 3 till term, but peaked in month 5 and 10. Glutathione and catalase were highest in the first month and remained after. Time-averaged maximum velocity and AD for both UA and VA negatively correlated with serum lipids, glucose, catalase and glutathione, while positively correlated with malondialdehyde and total protein. Thus, increases in uterine blood flow (UtBF), vaginal blood flow (VaBF) and placental blood flow (PaBF) are associated with increased metabolism and oxidative stress in buffalo pregnancy.


Asunto(s)
Velocidad del Flujo Sanguíneo/veterinaria , Búfalos/fisiología , Estrés Oxidativo , Embarazo/fisiología , Animales , Glucemia , Búfalos/sangre , Búfalos/metabolismo , Femenino , Hemodinámica , Lípidos/sangre , Circulación Placentaria , Ultrasonografía Doppler/veterinaria , Útero/irrigación sanguínea , Vagina/irrigación sanguínea
17.
Antioxidants (Basel) ; 9(11)2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202933

RESUMEN

Opening of large conductance calcium-activated and voltage-dependent potassium (BKCa) channels hyperpolarizes plasma membranes of smooth muscle (SM) to cause vasodilation, underling a key mechanism for mediating uterine artery (UA) dilation in pregnancy. Hydrogen sulfide (H2S) has been recently identified as a new UA vasodilator, yet the mechanism underlying H2S-induced UA dilation is unknown. Here, we tested whether H2S activated BKCa channels in human UA smooth muscle cells (hUASMC) to mediate UA relaxation. Multiple BKCa subunits were found in human UA in vitro and hUASMC in vitro, and high ß1 and γ1 proteins were localized in SM cells in human UA. Baseline outward currents, recorded by whole-cell and single-channel patch clamps, were significantly inhibited by specific BKCa blockers iberiotoxin (IBTX) or tetraethylammonium, showing specific BKCa activity in hUASMC. H2S dose (NaHS, 1-1000 µM)-dependently potentiated BKCa currents and open probability. Co-incubation with a Ca2+ blocker nifedipine (5 µM) or a chelator (ethylene glycol-bis (ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), 5 mM) did not alter H2S-potentiated BKCa currents and open probability. NaHS also dose-dependently relaxed phenylephrine pre-constricted freshly prepared human UA rings, which was inhibited by IBTX. Thus, H2S stimulated human UA relaxation at least partially via activating SM BKCa channels independent of extracellular Ca2+.

18.
Endocrinology ; 161(11)2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32987401

RESUMEN

Angiogenesis is a physiological process for endometrial regeneration in the menstrual cycle and remodeling during pregnancy. Endogenous hydrogen sulfide (H2S), produced by cystathionine-ß synthase (CBS) and cystathionine-γ lyase (CSE), is a potent proangiogenic factor; yet, whether the H2S system is expressed in the endometrium and whether H2S plays a role in endometrial angiogenesis are unknown. This study was to test whether estrogens stimulate endometrial H2S biosynthesis to promote endometrial microvascular endothelial cell (EMEC) angiogenesis. CBS messenger RNA/protein and H2S production significantly differed among endometria from postmenopausal (POM), premenopausal secretory (sPRM), and proliferative (pPRM) nonpregnant (NP) and pregnant (Preg) women (P < .05) in a rank order of POM approximately equal to sPRM is less than pPRM is less than Preg, positively correlating with angiogenesis indices and endogenous estrogens and with no difference in CSE expression. CBS and CSE proteins were localized to stroma, glands, and vessels in endometrium, and greater stromal CBS protein was observed in the pPRM and Preg states. Estradiol-17ß (E2) (but not progesterone) stimulated CBS (but not CSE) expression and H2S production in pPRM endometrial stromal cells (ESCs) in vitro, which were attenuated by ICI 182 780. The H2S donor sodium hydrosulfide promoted in vitro EMEC angiogenesis. Co-culture with sPRM, pPRM, and Preg ESCs all stimulated EMEC migration with a rank order of sPRM less than pPRM approximately equal to Preg. CBS (but not CSE) inhibition attenuated ESC-stimulated EMEC migration. E2 did not affect EMEC migration but potentiated ESC-stimulated EMEC migration. Altogether, estrogens stimulate specific receptor-dependent stromal CBS-H2S production to promote endometrial EMEC angiogenesis in women.


Asunto(s)
Cistationina betasintasa/metabolismo , Endometrio/efectos de los fármacos , Estradiol/farmacología , Sulfuro de Hidrógeno/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Células del Estroma/metabolismo , Adulto , Anciano , Inductores de la Angiogénesis/metabolismo , Células Cultivadas , Endometrio/irrigación sanguínea , Endometrio/citología , Endometrio/metabolismo , Femenino , Humanos , Ciclo Menstrual/efectos de los fármacos , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Persona de Mediana Edad , Neovascularización Fisiológica/genética , Posmenopausia/efectos de los fármacos , Posmenopausia/genética , Posmenopausia/metabolismo , Embarazo , Células del Estroma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
19.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32506120

RESUMEN

CONTEXT: Dysregulated immune hemostasis occurs in unexplained recurrent spontaneous abortion (URSA). Synthesized by cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE), hydrogen sulfide (H2S) promotes regulatory T-cell differentiation and regulates immune hemostasis; yet, its role in URSA is elusive. OBJECTIVE: To determine if H2S plays a role in early pregnancy and if dysregulated H2S signaling results in recurrent spontaneous abortion. DESIGN: First trimester placenta villi and decidua were collected from normal and URSA pregnancies. Protein expression was examined by immunohistochemistry and immunoblotting. Human trophoblast HTR8/SVneo and JEG3 cells were treated with H2S donors; HTR8/SVneo cells were transfected with CBS ribonucleic acid interference (RNAi) or complementary deoxyribonucleic acid. Cell migration and invasion were determined by transwell assays; trophoblast transcriptomes were determined by RNA sequencing (RNA-seq). Wild-type, CBS-deficient, and CBA/J × DBA/2 mice were treated with CBS and CSE inhibitors or H2S donors to determine the role of H2S in early pregnancy in vivo. RESULTS: CBS and CSE proteins showed cell-specific expressions, but only CBS decreased in the villous cytotrophoblast in URSA versus normal participants. H2S donors promoted migration and invasion and MMP-2 and VEGF expression in human placenta trophoblast cells that contain SV40 viral deoxyribonucleic acid sequences (HTR8/SVneo) and human placenta trophoblast cells (JEG3 cells), similar to forced CBS expression in HTR8/SVneo cells. The CBS-responsive transcriptomes in HTR8/SVneo cells contained differentially regulated genes (ie, interleukin-1 receptor and prostaglandin-endoperoxide synthase 2) that are associated with nuclear factor-κB-mediated inflammatory response. In vivo, dysregulated CBS/H2S signaling significantly increased embryonic resorption and decidual T-helper 1/T-helper 2 imbalance in mice, which was partially rescued by H2S donors. CONCLUSION: CBS/H2S signaling maintains early pregnancy, possibly via regulating maternal-fetal interface immune hemostasis, offering opportunities for H2S-based immunotherapies for URSA.


Asunto(s)
Aborto Habitual/inmunología , Sulfuro de Hidrógeno/inmunología , Intercambio Materno-Fetal/inmunología , Trofoblastos/inmunología , Animales , Células Cultivadas , Cistationina betasintasa/genética , Cistationina betasintasa/inmunología , Cistationina gamma-Liasa/inmunología , Femenino , Homeostasis/inmunología , Humanos , Masculino , Ratones Noqueados , Embarazo , Transducción de Señal/inmunología
20.
Int J Mol Sci ; 21(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570961

RESUMEN

Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal-fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERß) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a "new" UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.


Asunto(s)
Estrógenos/metabolismo , Receptores de Estrógenos/metabolismo , Arteria Uterina/patología , Epigénesis Genética , Femenino , Humanos , Óxido Nítrico/metabolismo , Embarazo , Receptores de Estrógenos/genética , Arteria Uterina/metabolismo , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...