Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 20(1): 343, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064320

RESUMEN

BACKGROUND: Caixin and Zicaitai (Brassica rapa) belong to Southern and Central China respectively. Zicaitai contains high amount of anthocyanin in leaf and stalk resulting to the purple color. Stalk is the major edible part and stalk color is an economically important trait for the two vegetables. The aim of this study is to construct a high density genetic map using the specific length amplified fragment sequencing (SLAF-seq) technique to explore genetic basis for anthocyanin pigmentation traits via quantitative trait loci (QTL) mapping. RESULTS: We constructed a high generation linkage map with a mapping panel of F2 populations derived from 150 individuals of parental lines "Xianghongtai 01" and "Yinong 50D" with purple and green stalk respectively. The map was constructed containing 4253 loci, representing 10,940 single nucleotide polymorphism (SNP) markers spanning 1030.04 centiMorgans (cM) over 10 linkage groups (LGs), with an average distance between markers of 0.27 cM. Quantitative trait loci (QTL) analysis revealed that a major locus on chromosome 7 and 4 minor QTLs explaining 2.69-61.21% of phenotypic variation (PVE) were strongly responsible for variation in stalk color trait. Bioinformatics analysis of the major locus identified 62 protein-coding genes. Among the major locus, there were no biosynthetic genes related to anthocyanin. However, there were several transcription factors like helix-loop-helix (bHLH) bHLH, MYB in the locus. Seven predicted candidate genes were selected for the transcription level analysis. Only bHLH49 transcription factor, was significantly higher expressed in both stalks and young leaves of Xianghongtai01 than Yinong50D. An insertion and deletion (InDel) marker developed from deletion/insertion in the promoter region of bHLH49 showed significant correlation with the stalk color trait in the F2 population. CONCLUSION: Using the constructed high-qualified linkage map, this study successfully identified QTLs for stalk color trait. The identified valuable markers and candidate genes for anthocyanin accumulation in stalk will provide useful information for molecular regulation of anthocyanin biosynthesis. Overall our findings will lay a foundation for functional gene cloning, marker-assisted selection (MAS) and molecular breeding of important economic traits in B. rapa.


Asunto(s)
Antocianinas/metabolismo , Brassica rapa/anatomía & histología , Brassica rapa/genética , Cromosomas de las Plantas , Sitios de Carácter Cuantitativo , Brassica rapa/crecimiento & desarrollo , Mapeo Cromosómico , Ligamiento Genético , Marcadores Genéticos , Técnicas de Genotipaje , Fenotipo , Pigmentación , Análisis de Secuencia de ADN
2.
Front Plant Sci ; 8: 1083, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680435

RESUMEN

Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28) was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi lines were considerably lower than those in the wild-type. The results suggest that BoaMYB28 has the potential to alter the aliphatic glucosinolates contents in Chinese kale at the genetic level.

3.
Front Plant Sci ; 8: 92, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28228764

RESUMEN

Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues.

4.
Bioresour Technol ; 102(3): 3343-51, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21146403

RESUMEN

The Chlamydomonas reinhardtii starch-less mutant, BAF-J5, was found to store lipids up to 65% of dry cell weight when grown photoheterotrophically and subjected to nitrogen starvation. Fourier transform infrared spectroscopy was used as a high-throughput method for semi-quantitative measurements of protein, carbohydrate and lipid content. The fatty acids of wild-type and starch mutants were identified and quantified by gas chromatography mass spectrometry. C. reinhardtii starch mutants, BAF-J5 and I7, produce significantly elevated levels of 16:0, 18:1(Δ9), 18:2(Δ9,12) and 18:3(Δ9,12,15) fatty acids. Long-chain saturated, mono- and polyunsaturated fatty acids were found under nitrogen starvation. Oleosin-like and caleosin-like genes were identified in the C. reinhardtii genome. However, proteomic analysis of isolated lipid bodies only identified a key lipid droplet associated protein. This study shows it is possible to manipulate algal biosynthetic pathways to produce high levels of lipid that may be suitable for conversion to liquid fuels.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Ácidos Grasos/metabolismo , Nitrógeno/metabolismo , Transducción de Señal/fisiología
5.
Proteomics ; 9(18): 4406-15, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19725077

RESUMEN

Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.


Asunto(s)
Pisum sativum/metabolismo , Lectinas de Plantas/biosíntesis , Proteínas de Plantas/biosíntesis , Plantas Modificadas Genéticamente/metabolismo , Proteómica/métodos , Proteínas de Almacenamiento de Semillas/biosíntesis , Análisis de Varianza , Animales , Electroforesis en Gel Bidimensional , Ratones , Pisum sativum/genética , Péptidos/metabolismo , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Proteoma/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo , Semillas/genética , Semillas/metabolismo
6.
Mol Plant Microbe Interact ; 20(7): 843-56, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17601171

RESUMEN

Many behaviors in bacteria, including behaviors important to pathogenic and symbiotic interactions with eukaryotic hosts, are regulated by a mechanism called quorum sensing (QS). A "quorum-quenching" approach was used here to identify QS-regulated behaviors in the N-fixing bacterial symbiont Sinorhizobium meliloti. The AiiA lactonase from Bacillus produced in S. meliloti was shown to enzymatically inactivate S. meliloti's N-acyl homoserine lactone (AHL) QS signals, thereby disrupting normal QS regulation. Sixty proteins were differentially accumulated in the AiiA-producing strain versus the control in early log or early stationary phase cultures. Fifty-two of these QS-regulated proteins, with putative functions that include cell division, protein processing and translation, metabolite transport, oxidative stress, and amino acid metabolism, were identified by peptide mass fingerprinting. Transcription of representative genes was reduced significantly in the AiiA-producing strain, although the effects of AiiA on protein accumulation did not always correspond to effects on transcription. The QS signal-deficient strain was reduced significantly in nodule initiation during the first 12 h after inoculation onto Medicago truncatula host plants. The AiiA lactonase also was found to substantially inactivate two of the AHL mimic compounds secreted by M. truncatula. This suggests some structural similarity between bacterial AHLs and these mimic compounds. It also indicates that quorum quenching could be useful in identifying Sinorhizobium genes that are affected by such host QS mimics in planta.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Proteoma/análisis , Percepción de Quorum/fisiología , Sinorhizobium meliloti/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/aislamiento & purificación , 4-Butirolactona/metabolismo , Proteínas Bacterianas/genética , Hidrolasas de Éster Carboxílico/análisis , Hidrolasas de Éster Carboxílico/genética , Cromatografía en Capa Delgada , Regulación Bacteriana de la Expresión Génica , Medicago/microbiología , Proteoma/genética , Percepción de Quorum/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis
7.
J Bacteriol ; 187(23): 7931-44, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16291666

RESUMEN

Quorum sensing (QS) in Sinorhizobium meliloti, the N-fixing bacterial symbiont of Medicago host plants, involves at least half a dozen different N-acyl homoserine lactone (AHL) signals and perhaps an equal number of AHL receptors. The accumulation of 55 proteins was found to be dependent on SinI, the AHL synthase, and/or on ExpR, one of the AHL receptors. Gas chromatography-mass spectrometry and electrospray ionization tandem mass spectrometry identified 3-oxo-C(14)-homoserine lactone (3-oxo-C(14)-HSL), C(16)-HSL, 3-oxo-C(16)-HSL, C(16:1)-HSL, and 3-oxo-C(16:1)-HSL as the sinI-dependent AHL QS signals accumulated by the 8530 expR(+) strain under the conditions used for proteome analysis. The 8530 expR(+) strain secretes additional, unidentified QS-active compounds. Addition of 200 nM C(14)-HSL or C(16:1)-HSL, two of the known SinI AHLs, affected the levels of 75% of the proteins, confirming that their accumulation is QS regulated. A number of the QS-regulated proteins have functions plausibly related to symbiotic interactions with the host, including ExpE6, IdhA, MocB, Gor, PckA, LeuC, and AglE. Seven of 10 single-crossover beta-glucuronidase (GUS) transcriptional reporters in genes corresponding to QS-regulated proteins showed significantly different activities in the sinI and expR mutant backgrounds and in response to added SinI AHLs. The sinI mutant and several of the single-crossover strains were significantly delayed in the ability to initiate nodules on the primary root of the host plant, Medicago truncatula, indicating that sinI-dependent QS regulation and QS-regulated proteins contribute importantly to the rate or efficiency of nodule initiation. The sinI and expR mutants were also defective in surface swarming motility. The sinI mutant was restored to normal swarming by 5 nM C(16:1)-HSL.


Asunto(s)
Genes Bacterianos , Sinorhizobium meliloti/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/biosíntesis , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Cromatografía en Capa Delgada , Genes Reporteros , Glucuronidasa/genética , Locomoción , Medicago/metabolismo , Medicago/microbiología , Mutación , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis
8.
Mol Plant Microbe Interact ; 18(12): 1340-52, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16478054

RESUMEN

NolR is a regulator of nodulation genes present in species belonging to the genera Rhizobium and Sinorhizobium. The expression of the nolR gene in Sinorhizobium meliloti AK631 was investigated in relation to stage of growth, availability of nutrients, and different environmental stimuli using the nolR::lacZ fusion report system. It has been shown that the nolR gene is regulated in a population-density-dependent fashion and influenced by a number of environmental stimuli, including nutrients, pH, and oxygen. Exploration of the physiological functions of NolR under various laboratory conditions has shown that NolR is required for the optimal growth of the bacteria on solid media, optimal survival of the bacteria in carbon-starved minimal medium, and after heat shock challenge. NolR also is involved in recipient-induced conjugative transfer of a plasmid. Proteome analysis of strain AK631 and its Tn5-induced nolR-deficient mutant EK698 revealed that a functional NolR induced significant differences in the accumulation of 20 polypeptides in peptide mass fingerprinting early-log-phase cultures and 48 polypeptides in stationary-phase cultures. NolR acted mainly as a repressor in the early-log-phase cultures, whereas it acted as both repressor and activator in the stationary-phase cultures. The NolR protein and 59 NolR-associated proteins have been identified by peptide mass fingerprinting. The NolR protein was differentially expressed only in the NolR+ wild-type strain AK631 but not in its NolR- derivative EK698, confirming that no functional NolR was produced in the mutant. The NolR-associated proteins have diverse functions in amino acid metabolism, carbohydrate metabolism, lipid metabolism, nucleotide metabolism, energy metabolism, metabolism of Co-factors, and cellular adaptation and transportation. These results further support our previous proposal that the NolR is a global regulatory protein which is required for the optimization of nodulation, bacterial growth and survival, and conjugative transfer of a plasmid.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Genómica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Sinorhizobium meliloti/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Concentración de Iones de Hidrógeno , Luteolina/farmacología , Oxígeno , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Sinorhizobium meliloti/metabolismo
9.
Plant Physiol ; 134(1): 137-46, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14671013

RESUMEN

The unicellular soil-freshwater alga Chlamydomonas reinhardtii was found to secrete substances that mimic the activity of the N-acyl-L-homoserine lactone (AHL) signal molecules used by many bacteria for quorum sensing regulation of gene expression. More than a dozen chemically separable but unidentified substances capable of specifically stimulating the LasR or CepR but not the LuxR, AhyR, or CviR AHL bacterial quorum sensing reporter strains were detected in ethyl acetate extracts of C. reinhardtii culture filtrates. Colonies of C. reinhardtii and Chlorella spp. stimulated quorum sensing-dependent luminescence in Vibrio harveyi, indicating that these algae may produce compounds that affect the AI-2 furanosyl borate diester-mediated quorum sensing system of Vibrio spp. Treatment of the soil bacterium Sinorhizobium meliloti with a partially purified LasR mimic from C. reinhardtii affected the accumulation of 16 of the 25 proteins that were altered in response to the bacterium's own AHL signals, providing evidence that the algal mimic affected quorum sensing-regulated functions in this wild-type bacterium. Peptide mass fingerprinting identified 32 proteins affected by the bacterium's AHLs or the purified algal mimic, including GroEL chaperonins, the nitrogen regulatory protein PII, and a GTP-binding protein. The algal mimic was able to cancel the stimulatory effects of bacterial AHLs on the accumulation of seven of these proteins, providing evidence that the secretion of AHL mimics by the alga could be effective in disruption of quorum sensing in naturally encountered bacteria.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Chlamydomonas reinhardtii/fisiología , 4-Butirolactona/análogos & derivados , 4-Butirolactona/fisiología , Proteínas Algáceas/aislamiento & purificación , Proteínas Algáceas/fisiología , Animales , Proteínas Bacterianas/fisiología , Chlorella/fisiología , Proteoma , Proteínas Protozoarias/fisiología , Transducción de Señal , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiología , Vibrio/fisiología
10.
J Bacteriol ; 185(17): 5029-36, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12923075

RESUMEN

Proteome analysis revealed that two long-chain N-acyl homoserine lactones (AHLs) produced by Sinorhizobium meliloti 1021 induced significant differences in the accumulation of more than 100 polypeptides in early-log-phase cultures of the wild type. Fifty-six of the corresponding proteins have been identified by peptide mass fingerprinting. The proteins affected by addition of these two AHLs had diverse functions in carbon and nitrogen metabolism, energy cycles, metabolite transport, DNA synthesis, and protein turnover. Two hours of exposure to 3-oxo-C(16:1)-homoserine lactone (3-oxo-C(16:1)-HL) affected the accumulation of 40 of the 56 identified proteins, whereas comparable exposure to C(14)-HL affected 13 of the 56 proteins. Levels of four proteins were affected by both AHLs. Exposure to 3-oxo-C(16:1)-HL for 8 h affected the accumulation of 17 proteins, 12 of which had reduced accumulation. Of the 80 proteins identified as differing in accumulation between early-log- and early-stationary-phase cultures, only 13 were affected by exposure to 3-oxo-C(16:1)-HL or C(14)-HL. These results provide a foundation for future studies of the functions regulated by AHL quorum sensing in S. meliloti and help to establish proteomic analysis as a powerful global approach to the identification of quorum-sensing regulatory patterns in wild-type bacteria.


Asunto(s)
4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteoma , Sinorhizobium meliloti/crecimiento & desarrollo , Proteínas Bacterianas/genética , Medios de Cultivo , Genoma Bacteriano , Procesamiento de Imagen Asistido por Computador , Proteómica , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
11.
Proteomics ; 2(9): 1288-303, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12362347

RESUMEN

We tested whether proteome reference maps established for one species can be used for cross-species protein identification by comparing two-dimensional protein gel patterns and protein identification data of two closely related bacterial strains and four plant species. First, proteome profiles of two strains of the fully sequenced bacterium Sinorhizobium meliloti were compared as an example of close relatedness, high reproducibility and sequence availability. Secondly, the proteome profiles of three legumes (Medicago truncatula, Melilotus alba and Trifolium subterraneum), and the nonlegume rice (Oryza sativa) were analysed to test cross-species similarities. In general, we found stronger similarities in gel patterns of the arrayed proteins between the two bacterial strains and between the plant species than could be expected from the sequence similarities. However, protein identity could not be concluded from their gel position, not even when comparing strains of the same species. Surprisingly, in the bacterial strains peptide mass fingerprinting was more reliable for species-specific protein identification than N-terminal sequencing. While peptide masses were found to be unreliable for cross-species protein identification, we present useful criteria to determine confident matching against species-specific expressed sequence tag databases. In conclusion, we present evidence that cautions the use of proteome reference maps and peptide mass fingerprinting for cross-species protein identification.


Asunto(s)
Electroforesis en Gel Bidimensional/métodos , Proteoma/química , Procesamiento de Imagen Asistido por Computador , Péptidos/química , Estructura Terciaria de Proteína , Sinorhizobium meliloti/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...