Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Res ; 33(12): 904-922, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37460805

RESUMEN

Pyroptosis is a type of regulated cell death executed by gasdermin family members. However, how gasdermin-mediated pyroptosis is negatively regulated remains unclear. Here, we demonstrate that mannose, a hexose, inhibits GSDME-mediated pyroptosis by activating AMP-activated protein kinase (AMPK). Mechanistically, mannose metabolism in the hexosamine biosynthetic pathway increases levels of the metabolite N-acetylglucosamine-6-phosphate (GlcNAc-6P), which binds AMPK to facilitate AMPK phosphorylation by LKB1. Activated AMPK then phosphorylates GSDME at Thr6, which leads to blockade of caspase-3-induced GSDME cleavage, thereby repressing pyroptosis. The regulatory role of AMPK-mediated GSDME phosphorylation was further confirmed in AMPK knockout and GSDMET6E or GSDMET6A knock-in mice. In mouse primary cancer models, mannose administration suppressed pyroptosis in small intestine and kidney to alleviate cisplatin- or oxaliplatin-induced tissue toxicity without impairing antitumor effects. The protective effect of mannose was also verified in a small group of patients with gastrointestinal cancer who received normal chemotherapy. Our study reveals a novel mechanism whereby mannose antagonizes GSDME-mediated pyroptosis through GlcNAc-6P-mediated activation of AMPK, and suggests the utility of mannose supplementation in alleviating chemotherapy-induced side effects in clinic applications.


Asunto(s)
Manosa , Piroptosis , Humanos , Animales , Ratones , Manosa/farmacología , Proteínas Quinasas Activadas por AMP , Gasderminas
2.
Cell Chem Biol ; 30(3): 261-277.e8, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36889311

RESUMEN

Pulmonary fibrosis is a typical sequela of coronavirus disease 2019 (COVID-19), which is linked with a poor prognosis for COVID-19 patients. However, the underlying mechanism of pulmonary fibrosis induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. Here, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 induced pulmonary fibrosis by activating pulmonary fibroblasts. N protein interacted with the transforming growth factor ß receptor I (TßRI), to disrupt the interaction of TßRI-FK506 Binding Protein12 (FKBP12), which led to activation of TßRI to phosphorylate Smad3 and boost expression of pro-fibrotic genes and secretion of cytokines to promote pulmonary fibrosis. Furthermore, we identified a compound, RMY-205, that bound to Smad3 to disrupt TßRI-induced Smad3 activation. The therapeutic potential of RMY-205 was strengthened in mouse models of N protein-induced pulmonary fibrosis. This study highlights a signaling pathway of pulmonary fibrosis induced by N protein and demonstrates a novel therapeutic strategy for treating pulmonary fibrosis by a compound targeting Smad3.


Asunto(s)
COVID-19 , Fibrosis Pulmonar , Animales , Ratones , COVID-19/complicaciones , Fibrosis , Proteínas de la Nucleocápside/uso terapéutico , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/tratamiento farmacológico , SARS-CoV-2
3.
Nat Metab ; 4(10): 1306-1321, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36192599

RESUMEN

Extracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-ß stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression. In HSCs, the nuclear receptor Nur77 transcriptionally activates the expression of depalmitoylase ABHD17B to inhibit HK1 palmitoylation, consequently attenuating HK1 release. However, TGF-ß-activated Akt functionally represses Nur77 by inducing Nur77 phosphorylation and degradation. We identify the small molecule PDNPA that binds Nur77 to generate steric hindrance to block Akt targeting, thereby disrupting Akt-mediated Nur77 degradation and preserving Nur77 inhibition of HK1 release. Together, this study demonstrates an overlooked function of HK1 in HCC upon its release from HSCs and highlights PDNPA as a candidate compound for inhibiting HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Células Estrelladas Hepáticas/metabolismo , Hexoquinasa/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Microambiente Tumoral
4.
Cancer Lett ; 516: 48-56, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34082025

RESUMEN

Extracellular vesicles (EVs) have gained significant attention in recent decades as major mediators of intercellular communication that are involved in various essential physiological and pathological processes. They are secreted by almost all cell types and carry bioactive materials, such as proteins, lipids and nucleic acids, that can be transmitted from host cells to recipient cells, thereby eliciting phenotypic and functional alterations in the recipient cells. Recent evidence shows that EVs play essential roles in remodeling the tumor immune microenvironment (TIME). EVs derived from tumor cells and immune cells mediate mutual communication at proximal and distal sites, which determines tumor fate and antitumor therapeutic effectiveness. In this review, the current understanding of EVs and their roles in remodeling the TIME and modulating tumor-specific immunity are summarized. We mainly discuss the mutual regulation between tumor cells and tumor-infiltrating immune cells through the delivery of EVs in the TIME. We also describe the limitations of current studies and discuss directions for further research.


Asunto(s)
Vesículas Extracelulares/inmunología , Neoplasias/inmunología , Microambiente Tumoral/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología
5.
Cell Res ; 31(9): 980-997, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34012073

RESUMEN

Pyroptosis is a form of regulated cell death mediated by gasdermin family members, among which the function of GSDMC has not been clearly described. Herein, we demonstrate that the metabolite α-ketoglutarate (α-KG) induces pyroptosis through caspase-8-mediated cleavage of GSDMC. Treatment with DM-αKG, a cell-permeable derivative of α-KG, elevates ROS levels, which leads to oxidation of the plasma membrane-localized death receptor DR6. Oxidation of DR6 triggers its endocytosis, and then recruits both pro-caspase-8 and GSDMC to a DR6 receptosome through protein-protein interactions. The DR6 receptosome herein provides a platform for the cleavage of GSDMC by active caspase-8, thereby leading to pyroptosis. Moreover, this α-KG-induced pyroptosis could inhibit tumor growth and metastasis in mouse models. Interestingly, the efficiency of α-KG in inducing pyroptosis relies on an acidic environment in which α-KG is reduced by MDH1 and converted to L-2HG that further boosts ROS levels. Treatment with lactic acid, the end product of glycolysis, builds an improved acidic environment to facilitate more production of L-2HG, which makes the originally pyroptosis-resistant cancer cells more susceptible to α-KG-induced pyroptosis. This study not only illustrates a pyroptotic pathway linked with metabolites but also identifies an unreported principal axis extending from ROS-initiated DR6 endocytosis to caspase-8-mediated cleavage of GSDMC for potential clinical application in tumor therapy.


Asunto(s)
Caspasa 8 , Proteínas de Unión al ADN , Neoplasias , Piroptosis , Receptores del Factor de Necrosis Tumoral , Animales , Caspasa 1/metabolismo , Ácidos Cetoglutáricos , Ratones , Receptores de Muerte Celular
6.
Proc Natl Acad Sci U S A ; 117(44): 27412-27422, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087562

RESUMEN

Nuclear receptor Nur77 participates in multiple metabolic regulations and plays paradoxical roles in tumorigeneses. Herein, we demonstrated that the knockout of Nur77 stimulated mammary tumor development in two mouse models, which would be reversed by a specific reexpression of Nur77 in mammary tissues. Mechanistically, Nur77 interacted and recruited corepressors, the SWI/SNF complex, to the promoters of CD36 and FABP4 to suppress their transcriptions, which hampered the fatty acid uptake, leading to the inhibition of cell proliferation. Peroxisome proliferator-activated receptor-γ (PPARγ) played an antagonistic role in this process through binding to Nur77 to facilitate ubiquitin ligase Trim13-mediated ubiquitination and degradation of Nur77. Cocrystallographic and functional analysis revealed that Csn-B, a Nur77-targeting compound, promoted the formation of Nur77 homodimer to prevent PPARγ binding by steric hindrance, thereby strengthening the Nur77's inhibitory role in breast cancer. Therefore, our study reveals a regulatory function of Nur77 in breast cancer via impeding fatty acid uptake.


Asunto(s)
Neoplasias de la Mama/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , PPAR gamma/metabolismo , Fenilacetatos/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Proliferación Celular , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Estimación de Kaplan-Meier , Metabolismo de los Lípidos/efectos de los fármacos , Glándulas Mamarias Animales/patología , Ratones , Persona de Mediana Edad , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/agonistas , PPAR gamma/agonistas , Cultivo Primario de Células , Pronóstico , Proteolisis/efectos de los fármacos , Análisis de Matrices Tisulares , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación/efectos de los fármacos
7.
Cell Rep ; 33(3): 108284, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33086070

RESUMEN

The Hippo signaling pathway maintains organ size and tissue homeostasis via orchestration of cell proliferation and apoptosis. How this pathway triggers cell apoptosis remains largely unexplored. Here, we identify NR4A1 as a target of the Hippo pathway that mediates the pro-apoptotic and anti-tumor effects of the Hippo pathway whereby YAP regulates the transcription, phosphorylation, and mitochondrial localization of NR4A1. NR4A1, in turn, functions as a feedback inhibitor of YAP to promote its degradation, thereby inhibiting the function of YAP during liver regeneration and tumorigenesis. Our studies elucidate a regulatory loop between NR4A1 and YAP to coordinate Hippo signaling activity during liver regeneration and tumorigenesis and highlight NR4A1 as a marker of Hippo signaling, as well as a therapeutic target for hepatocellular carcinoma.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis/fisiología , Carcinogénesis , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/fisiología , Femenino , Homeostasis/fisiología , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Fosforilación , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
8.
Mol Cell ; 78(6): 1192-1206.e10, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32470318

RESUMEN

Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.


Asunto(s)
Proteínas Portadoras/metabolismo , Micropartículas Derivadas de Células/metabolismo , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/patología , Quimiocina CCL1/metabolismo , Progresión de la Enfermedad , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/metabolismo , Pronóstico , Factor de Transcripción STAT3/metabolismo , Hormonas Tiroideas/genética , Microambiente Tumoral , Proteínas de Unión a Hormona Tiroide
9.
Oncogene ; 39(11): 2408-2423, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31959898

RESUMEN

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Orphan nuclear receptor Nur77, which is low expressed in HCC, functions as a tumor suppressor to suppress HCC. However, the detailed mechanism is still not well understood. Here, we demonstrate that Nur77 could inhibit HCC development via transcriptional activation of the lncRNA WAP four-disulfide core domain 21 pseudogene (WFDC21P). Nur77 binds to its response elements on the WFDC21P promoter to directly induce WFDC21P transcription, which inhibits HCC cell proliferation, tumor growth, and tumor metastasis both in vitro and in vivo. In clinical HCC samples, WFDC21P expression positively correlated with that of Nur77, and the loss of WFDC21P is associated with worse prognosis. Mechanistically, WFDC21P could inhibit glycolysis by simultaneously interacting with PFKP and PKM2, two key enzymes in glycolysis. These interactions not only abrogate the tetramer formation of PFKP to impede its catalytic activity but also prevent the nuclear translocation of PKM2 to suppress its function as a transcriptional coactivator. Cytosporone-B (Csn-B), an agonist for Nur77, could stimulate WFDC21P expression and suppress HCC in a WFDC21P-dependent manner. Therefore, our study reveals a new HCC suppressor and connects the glycolytic remodeling of HCC with the Nur77-WFDC21P-PFKP/PKM2 axis.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Carcinogénesis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Procesos de Crecimiento Celular , Línea Celular Tumoral , Glucólisis , Células Hep G2 , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/agonistas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Fenilacetatos/farmacología , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Activación Transcripcional , Regulación hacia Arriba
10.
Cell Res ; 28(12): 1171-1185, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30287942

RESUMEN

Iron has been shown to trigger oxidative stress by elevating reactive oxygen species (ROS) and to participate in different modes of cell death, such as ferroptosis, apoptosis and necroptosis. However, whether iron-elevated ROS is also linked to pyroptosis has not been reported. Here, we demonstrate that iron-activated ROS can induce pyroptosis via a Tom20-Bax-caspase-GSDME pathway. In melanoma cells, iron enhanced ROS signaling initiated by CCCP, causing the oxidation and oligomerization of the mitochondrial outer membrane protein Tom20. Bax is recruited to mitochondria by oxidized Tom20, which facilitates cytochrome c release to cytosol to activate caspase-3, eventually triggering pyroptotic death by inducing GSDME cleavage. Therefore, ROS acts as a causative factor and Tom20 senses ROS signaling for iron-driven pyroptotic death of melanoma cells. Since iron activates ROS for GSDME-dependent pyroptosis induction and melanoma cells specifically express a high level of GSDME, iron may be a potential candidate for melanoma therapy. Based on the functional mechanism of iron shown above, we further demonstrate that iron supplementation at a dosage used in iron-deficient patients is sufficient to maximize the anti-tumor effect of clinical ROS-inducing drugs to inhibit xenograft tumor growth and metastasis of melanoma cells through GSDME-dependent pyroptosis. Moreover, no obvious side effects are observed in the normal tissues and organs of mice during the combined treatment of clinical drugs and iron. This study not only identifies iron as a sensitizer amplifying ROS signaling to drive pyroptosis, but also implicates a novel iron-based intervention strategy for melanoma therapy.


Asunto(s)
Hierro/farmacología , Melanoma/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias , Piroptosis/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Animales , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Caspasa 3/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Células HEK293 , Humanos , Melanoma/tratamiento farmacológico , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína X Asociada a bcl-2/metabolismo
11.
Cancer Res ; 78(17): 4853-4864, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29898994

RESUMEN

p62 is a receptor that facilitates selective autophagy by interacting simultaneously with cargoes and LC3 protein on the autophagosome to maintain cellular homeostasis. However, the regulatory mechanism(s) behind this process and its association with breast cancer remain to be elucidated. Here, we report that Flightless-I (FliI), a novel p62-interacting protein, promotes breast cancer progression by impeding selective autophagy. FliI was highly expressed in clinical breast cancer samples, and heterozygous deletion of FliI retarded the development of mammary tumors in PyVT mice. FliI induced p62-recruited cargoes into Triton X-100 insoluble fractions (TI) to form aggregates, thereby blocking p62 recognition of LC3 and hindering p62-dependent selective autophagy. This function of Flil was reinforced by Akt-mediated phosphorylation at Ser436 and inhibited by phosphorylation of Ulk1 at Ser64. Obstruction of autophagic clearance of p62-recruited cargoes by FliI was associated with the accumulation of oxidative damage on proteins and DNA, which could contribute to the development of cancer. Heterozygous knockout of FliI facilitated selectively autophagic clearance of aggregates, abatement of ROS levels, and protein oxidative damage, ultimately retarding mammary cancer progression. In clinical breast cancer samples, Akt-mediated phosphorylation of FliI at Ser436 negatively correlated with long-term prognosis, while Ulk1-induced FliI phosphorylation at Ser64 positively correlated with clinical outcome. Together, this work demonstrates that FliI functions as a checkpoint protein for selective autophagy in the crosstalk between FliI and p62-recruited cargoes, and its phosphorylation may serve as a prognostic marker for breast cancer.Significance: Flightless-I functions as a checkpoint protein for selective autophagy by interacting with p62 to block its recognition of LC3, leading to tumorigenesis in breast cancer.Cancer Res; 78(17); 4853-64. ©2018 AACR.


Asunto(s)
Neoplasias de la Mama/genética , Carcinogénesis/genética , Proteínas de Microfilamentos/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Unión al ARN/genética , Receptores Citoplasmáticos y Nucleares/genética , Adulto , Anciano , Animales , Autofagosomas/metabolismo , Autofagosomas/patología , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Mama/metabolismo , Mama/patología , Neoplasias de la Mama/patología , Progresión de la Enfermedad , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Persona de Mediana Edad , Fosforilación , Unión Proteica/genética , Transactivadores
12.
Mol Cell ; 69(3): 480-492.e7, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395065

RESUMEN

Fatty acid oxidation (FAO) is crucial for cells to overcome metabolic stress by providing ATP and NADPH. However, the mechanism by which FAO is regulated in tumors remains elusive. Here we show that Nur77 is required for the metabolic adaptation of melanoma cells by protecting FAO. Glucose deprivation activates ERK2 to phosphorylate and induce Nur77 translocation to the mitochondria, where Nur77 binds to TPß, a rate-limiting enzyme in FAO. Although TPß activity is normally inhibited by oxidation under glucose deprivation, the Nur77-TPß association results in Nur77 self-sacrifice to protect TPß from oxidation. FAO is therefore able to maintain NADPH and ATP levels and prevent ROS increase and cell death. The Nur77-TPß interaction further promotes melanoma metastasis by facilitating circulating melanoma cell survival. This study demonstrates a novel regulatory function of Nur77 with linkage of the FAO-NADPH-ROS pathway during metabolic stress, suggesting Nur77 as a potential therapeutic target in melanoma.


Asunto(s)
Melanoma/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Supervivencia Celular/fisiología , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Células HEK293 , Humanos , Metabolismo de los Lípidos , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Subunidad beta de la Proteína Trifuncional Mitocondrial/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
13.
Nat Commun ; 8: 14420, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28240261

RESUMEN

Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Gluconeogénesis , Neoplasias Hepáticas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Sumoilación , Acetilación , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Regulación hacia Abajo/genética , Proteína p300 Asociada a E1A/metabolismo , Estabilidad de Enzimas , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteolisis , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
14.
Chem Biol ; 22(8): 1040-51, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26235054

RESUMEN

Apoptotic resistance is becoming a significant obstacle for cancer therapy as the majority of treatment takes the route of apoptotic induction. It is of great importance to develop an alternative strategy to induce cancer cell death. We previously reported that autophagic cell death mediated by nuclear receptor TR3 and driven by a chemical agonist, 1-(3,4,5-trihydroxyphenyl)nonan-1-one (THPN), is highly effective in the therapy of melanoma but not any other cancer types. Here, we discovered that the insensitivity of cancer cells to THPN originated from a high cellular Akt2 activity. Akt2 phosphorylation interferes with TR3 export to cytoplasm and targeting to mitochondria, which lead to the autophagic induction. Therefore, the TR3-mediated autophagy could be effectively induced in the otherwise insensitive cells by downregulating Akt2 activity. Highly effective antineoplastic compounds are developed through optimizing the structure of THPN. This study implicates a general strategy for cancer therapy by the induction of autophagic cell death.


Asunto(s)
Antineoplásicos/farmacología , Cetonas/farmacología , Proteínas Proto-Oncogénicas c-akt/agonistas , Pirogalol/análogos & derivados , Receptores de Hormona Tiroidea/metabolismo , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Células HeLa , Humanos , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirogalol/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nat Chem Biol ; 11(5): 339-46, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25822914

RESUMEN

Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block its binding to the κB element. However, this function of Nur77 is countered by the LPS-activated p38α phosphorylation of Nur77. Dampening the interaction between Nur77 and p38α would favor Nur77 suppression of the hyperinflammatory response. A compound, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl) phenyl]acetate, screened from a Nur77-biased library, blocked the Nur77-p38α interaction by targeting the ligand-binding domain of Nur77 and restored the suppression of the hyperinflammatory response through Nur77 inhibition of NF-κB. This study associates the nuclear receptor with immune homeostasis and implicates a new therapeutic strategy to treat hyperinflammatory responses by targeting a p38α substrate to modulate p38α-regulated functions.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/efectos de los fármacos , Fenilacetatos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/efectos de los fármacos , Animales , Diabetes Mellitus Tipo 2/complicaciones , Evaluación Preclínica de Medicamentos , Homeostasis/efectos de los fármacos , Inflamación/inducido químicamente , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Moleculares , Conformación Molecular , Sepsis/tratamiento farmacológico , Sepsis/genética , Factor de Transcripción ReIA/antagonistas & inhibidores
16.
Diabetes ; 64(6): 2069-81, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25576055

RESUMEN

Leptin, an anorexigenic hormone in the hypothalamus, suppresses food intake and increases energy expenditure. Failure to respond to leptin will lead to obesity. Here, we discovered that nuclear receptor Nur77 expression is lower in the hypothalamus of obese mice compared with normal mice. Injection of leptin results in significant reduction in body weight in wild-type mice but not in Nur77 knockout (KO) littermates or mice with specific Nur77 knockdown in the hypothalamus. Hypothalamic Nur77 not only participates in leptin central control of food intake but also expands leptin's reach to liver and adipose tissues to regulate lipid metabolism. Nur77 facilitates signal transducer and activator of transcription 3 (STAT3) acetylation by recruiting acetylase p300 and disassociating deacetylase histone deacetylase 1 (HDAC1) to enhance the transcriptional activity of STAT3 and consequently modulates the expression of downstream gene Pomc in the hypothalamus. Nur77 deficiency compromises response to leptin in mice fed a high-fat diet. Severe leptin resistance in Nur77 KO mice with increased appetite, lower energy expenditure, and hyperleptinemia contributes to aging-induced obesity. Our study opens a new avenue for regulating metabolism with Nur77 as the positive modulator in the leptin-driven antiobesity in the hypothalamus.


Asunto(s)
Hipotálamo/metabolismo , Leptina/farmacología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo , Acetilación/efectos de los fármacos , Animales , Western Blotting , Línea Celular , Humanos , Hipotálamo/efectos de los fármacos , Inmunoprecipitación , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Actividad Motora/efectos de los fármacos , Obesidad/metabolismo
17.
Nat Chem Biol ; 10(2): 133-40, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24316735

RESUMEN

Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.


Asunto(s)
Autofagia , Cetonas/química , Mitocondrias/fisiología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Pirogalol/análogos & derivados , Transducción de Señal , Animales , Línea Celular Tumoral , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Cetonas/farmacología , Melanoma/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Ratones , Conformación Proteica , Proteínas Proto-Oncogénicas/metabolismo , Pirogalol/química , Pirogalol/farmacología , Proteínas Supresoras de Tumor/metabolismo
18.
Int J Biochem Cell Biol ; 45(8): 1600-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23660295

RESUMEN

The orphan nuclear receptor TR3 (also known as Nur77) belongs to the steroid/thyroid/retinoid nuclear receptor superfamily and plays important roles in regulating cell proliferation, differentiation and apoptosis. No physiological ligand for TR3 has been found thus far; the determination of its binding partners is therefore important to clarify the biological functions of TR3. Here, we identified translocon-associated protein subunit γ (TRAPγ) as a novel TR3 binding partner using a tandem affinity purification method. This interaction between TR3 and TRAPγ was further confirmed, and the interacting regions were mapped. The ligand-binding domain of TR3 was required for TRAPγ binding, and the C terminus of TRAPγ was responsible for its interaction with TR3. When stimulated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or CD437, this TR3-TRAPγ interaction not only induced Ca(2+) depletion in the endoplasmic reticulum (ER) but also promoted the expression of the proapoptotic transcriptional regulator CHOP. Notably, both TR3 and TRAPγ were required for ER stress-induced apoptosis in HepG2 cells. Overall, this study demonstrated a novel, TR3-initiated signaling pathway in which TR3 regulates ER stress and induces apoptosis of hepatoma cells through its interaction with TRAPγ.


Asunto(s)
Apoptosis , Proteínas de Unión al Calcio/metabolismo , Estrés del Retículo Endoplásmico , Glicoproteínas de Membrana/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , Unión Proteica/efectos de los fármacos , Mapeo de Interacción de Proteínas , Retinoides/farmacología , Acetato de Tetradecanoilforbol/farmacología , Tunicamicina/farmacología
19.
Cancer Lett ; 329(1): 37-44, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23043761

RESUMEN

The orphan receptor TR3 is an important regulator of cell proliferation and apoptosis. However, whether TR3 is involved in regulating the stem-like properties of cancer cells remains unknown. The present study shows that TR3 expression is increased in gastric tumorsphere cells and is positively correlated with cancer stem cell (CSC) characteristics. Knocking down TR3 leads to the suppression of its stem-like properties in both gastric cancer cells and tumorsphere cells. This process involves the decreased expression of the stemness-related genes Oct-4 and Nanog and the invasion-related gene MMP-9. We further identify Nanog as a new target for the transcription factor TR3. Together, these data demonstrate for the first time that TR3 is essential for the maintenance of stem-like properties in human gastric cancer cells and implicate TR3 as a new therapeutic target for gastric cancer.


Asunto(s)
Células Madre Neoplásicas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Animales , Secuencia de Bases , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Datos de Secuencia Molecular , Proteína Homeótica Nanog , Células Madre Neoplásicas/patología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Regiones Promotoras Genéticas , Neoplasias Gástricas/genética , Microambiente Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
20.
EMBO Mol Med ; 5(1): 137-48, 2013 01.
Artículo en Inglés | MEDLINE | ID: mdl-23197407

RESUMEN

Angiotensin II (AngII) induces cardiac hypertrophy and increases the expression of TR3. To determine whether TR3 is involved in the regulation of the pathological cardiac hypertrophy induced by AngII, we established mouse and rat hypertrophy models using chronic AngII administration. Our results reveal that a deficiency of TR3 in mice or the knockdown of TR3 in the left ventricle of rats attenuated AngII-induced cardiac hypertrophy compared with the respective controls. A mechanistic analysis demonstrates that the TR3-mediated activation of mTORC1 is associated with AngII-induced cardiac hypertrophy. TR3 was shown to form a trimer with the TSC1/TSC2 complex that specifically promoted TSC2 degradation via a proteasome/ubiquitination pathway. As a result, mTORC1, but not mTORC2, was activated; this was accompanied by increased protein synthesis, enhanced production of reactive oxygen species and enlarged cell size, thereby resulting in cardiac hypertrophy. This study demonstrates that TR3 positively regulates cardiac hypertrophy by influencing the effect of AngII on the mTOR pathway. The elimination or reduction of TR3 may reduce cardiac hypertrophy; therefore, TR3 is a potential target for clinical therapy.


Asunto(s)
Cardiomegalia/etiología , Cardiomegalia/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Angiotensina II/administración & dosificación , Animales , Cardiomegalia/patología , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/química , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Proteínas/química , Proteínas/metabolismo , Ratas , Transducción de Señal , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...