Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6486, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090088

RESUMEN

Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the role of short-range order (SRO) on material performance. However, the mechanisms of SRO formation and its precise control remain elusive, limiting the progress of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 107 K s-1) and an enhanced semi-quantitative electron microscopy method, we characterize SRO in three CoCrNi-based face-centered-cubic (FCC) MPEAs. Surprisingly, irrespective of the processing and thermal treatment history, all samples exhibit similar levels of SRO. Atomistic simulations reveal that during solidification, prevalent local chemical order arises in the liquid-solid interface (solidification front) even under the extreme cooling rate of 1011 K s-1. This phenomenon stems from the swift atomic diffusion in the supercooled liquid, which matches or even surpasses the rate of solidification. Therefore, SRO is an inherent characteristic of most FCC MPEAs, insensitive to variations in cooling rates and even annealing treatments typically available in experiments.

2.
Sci Rep ; 14(1): 16472, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014091

RESUMEN

We report on the high-resolution imaging and molecular dynamics simulations of a 3D-printed eutectic high-entropy alloy (EHEA) Ni40Co20Fe10Cr10Al18W2 consisting of nanolamellar BCC and FCC phases. The direct lattice imaging of 3D-printed samples shows the Kurdjumov-Sachs (K-S) orientation relation {111} FCC parallel to {110} BCC planes in the dual-phase lamellae. Unlike traditional iron and steels, this alloy shows an irreversible BCC-to-FCC phase transformation under high pressures. The nanolamellar morphology is maintained after pressure cycling to 30 GPa, and nano-diffraction studies show both layers to be in the FCC phase. The chemical compositions of the dual-phase lamellae after pressure recovery remain unchanged, suggesting a diffusion-less BCC-FCC transformation in this EHEA. The lattice imaging of the pressure-recovered sample does not show any specific orientation relation between the two resulting FCC phases, indicating that many grain orientations are produced during the BCC-FCC phase transformation. Molecular dynamics simulations on phase transformation in a nanolamellar BCC/FCC in K-S orientation show that phase transformation from BCC to FCC is completed under high pressures, and the FCC phase is retained on decompression aided by the stable interfaces. Our work elucidates the irreversible phase transformation under static compression, providing an understanding of the orientation relationships in 3-D printed EHEA under high pressures.

3.
Nat Mater ; 23(6): 741-746, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740956

RESUMEN

Confining materials to two-dimensional forms changes the behaviour of the electrons and enables the creation of new devices. However, most materials are challenging to produce as uniform, thin crystals. Here we present a synthesis approach where thin crystals are grown in a nanoscale mould defined by atomically flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mould made of hexagonal boron nitride, we grow ultraflat bismuth crystals less than 10 nm thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-moulded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov-de Haas quantum oscillations originating from the (111) surface state Landau levels. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW mould growth technique establishes a platform for electronic studies and control of bismuth's Rashba surface states and topological boundary modes1-3. Beyond bismuth, the vdW-moulding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA