Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Eur J Med Res ; 29(1): 88, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291502

RESUMEN

BACKGROUND: Prostate cancer poses a considerable threat to human health. At present, the mechanism of tumor progression remains unclear. ZNF692 is overexpressed in many tumors, and the high expression of ZNF692 is correlated with tumor aggressiveness and tumor phenotype of prostate cancer, suggesting that ZNF692 may play an important role in tumor biology of prostate cancer. This paper aims to elucidate the relationship between them. METHODS: The expression level of ZNF692 was verified in normal prostate cells (RWPE-1) and prostate cancer cells (LNCaP, PC3, DU145). PC3 cells were selected to construct the ZNF692 knockout prostate cancer cell line. The changes of cell proliferation, apoptosis, invasion and metastasis were detected by CCK8, Edu staining, Transwell assay and scratch assay. The expression levels of related proteins were detected by Western blot. RESULTS: At the cellular level, ZNF692 was overexpressed to varying degrees in prostate cancer cell lines, with the highest expression in PC3 cell lines. CCK8 and Edu results showed that the proliferation of prostate cancer PC3 cells that knocked down ZNF692 was slowed. Transwell assay and scratch assay showed reduced invasion and migration of prostate cancer PC3 cells that knocked out ZNF692. Flow cytometry showed that the apoptosis rate of prostate cancer PC3 cells after ZNF692 knockout was increased. In addition, after ZNF692 silencing, the expression level of epithelial phenotype E-cadherin increased in PC3 cells, while the expression level of interstitial phenotype N-cadherin, Vimentin, c-Myc, and CyclinA1 decreased. The state of prostate cancer PC3 cells that overexpressed ZNF692 was reversed from the state after ZNF692 was knocked down. CONCLUSION: ZNF692 can be used as a new prognostic marker and a potential biologic therapeutic target for PCa. By inhibiting the expression of c-myc and cyclinA1, the EMT signaling pathway is regulated to provide evidence for its potential molecular mechanism.


Asunto(s)
Neoplasias de la Próstata , Transducción de Señal , Humanos , Masculino , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal/genética
2.
Front Surg ; 10: 1180107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151856

RESUMEN

Background: Renal primitive neuroectodermal tumor (rPNET) has the characteristics of a difficult preoperative diagnosis, a high degree of malignancy, easy early metastasis or postoperative recurrence, a poor prognosis, and so on. However, rPNET that has no metastasis before surgery can have a good survival prognosis only after radical surgical resection. Methods: We report the case of a 14-year-old male patient with a renal tumor who underwent open radical left nephrectomy without radiotherapy or chemotherapy before or after surgery, as confirmed by postoperative pathological results. The prognosis was followed up by a regular review of the chest and whole abdomen on CT, hematuria analysis, renal function, and electrolytes according to the guidelines for renal cancer. Results: Postoperative pathological results confirmed rPNET; no adjuvant radiotherapy or chemotherapy were performed after surgery; no tumor recurrence or metastasis were observed during the follow-up of nearly 5 years. Conclusions: Despite the high degree of rPNET malignancy, patients without metastases before surgery can still obtain a good survival prognosis through timely radical surgery.

3.
EClinicalMedicine ; 51: 101497, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35844773

RESUMEN

Background: Diabetic foot and leg ulcers are a major cause of disability among patients with diabetes mellitus. A topical gel called ENERGI-F703, applied twice daily and with adenine as its active pharmaceutical ingredient, accelerated wound healing in diabetic mice. The current study evaluated the safety and efficacy of ENERGI-F703 for patients with diabetic foot and leg ulcers. Methods: This randomized, double-blind, multicenter, phase II trial recruited patients from eight medical centers in Taiwan. Patients with intractable diabetic foot and leg ulcers (Wagner Grade 1-3 without active osteomyelitis) were randomly assigned (2:1) to receive topical ENERGI-F703 gel or vehicle gel twice daily for 12 weeks or until complete ulcer closure. The investigator, enrolled patients and site personnel were masked to treatment allocation. Intention to treat (ITT) population and safety population were patient to primary analyses and safety analyses, respectively. Primary outcome was complete ulcer closure rate at the end of treatment. This trial is registered with ClinicalTrials.gov, number NCT02672436. Findings: Starting from March 15th, 2017 to December 26th, 2019, 141 patients were enrolled as safety population and randomized into ENERGI-F703 gel (n = 95) group or vehicle gel (n = 46) group. In ITT population, ENERGI-F703 (n = 90) and vehicle group showed ulcer closure rates of 36.7% (95% CI = 26.75% - 47.49%) and 26.2% (95% CI = 13.86% - 42.04%) with difference of 9.74 % (95 % CI = -6.74% - 26.23%) and 25% quartiles of the time to complete ulcer closure of 69 days and 84 days, respectively. There were 25 (26.3%) patients in ENERGI-F703 group and 11 (23.9%) patients in vehicle group experiencing serious adverse events and five deaths occurred during the study period, none of them related to the treatment. Interpretation: Our study suggests that ENERGI-F703 gel is a safe and well-tolerated treatment for chronic diabetic foot and leg ulcers. Further studies are needed to corroborate our findings in light of limitations. Funding: Energenesis Biomedical Co., Ltd.

4.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35890094

RESUMEN

Cisplatin has been widely used in cancer treatments. Recent evidence indicates that adenine has potential anticancer activities against various types of cancers. However, the effects of the combination of adenine and cisplatin on hepatocellular carcinoma (HCC) cells remain sketchy. Here, our objective was to elucidate the anticancer activity of adenine in combination with cisplatin in HCC cells and its mechanistic pathways. Cell viability and cell cycle progression were assessed by the SRB assay and flow cytometry, respectively. Apoptosis was demonstrated by PI/annexin V staining and flow cytometric analysis. Protein expression, signaling cascade, and mRNA expression were analyzed by Western blotting and quantitative RT-PCR, respectively. Our results showed that adenine jointly potentiated the inhibitory effects of cisplatin on the cell viability of SK-Hep1 and Huh7 cells. Further investigation showed that adenine combined with cisplatin induced higher S phase arrest and apoptosis in HCC cells. Mechanically, adenine induced AMPK activation, reduced mTOR phosphorylation, and increased p53 and p21 levels. The combination of adenine and cisplatin synergistically reduced Bcl-2 and increased PUMA, cleaved caspase-3, and PARP in HCC cells. Adenine also upregulated the mRNA expression of p53, p21, PUMA, and PARP, while knockdown of AMPK reduced the increased expression of these genes. Furthermore, adenine also induced the activation of p38 MAPK through AMPK signaling, and the inhibition of p38 MAPK reduced the apoptosis of HCC cells with exposure to adenine combined with cisplatin. Collectively, these findings reveal that the combination of adenine and cisplatin synergistically enhances apoptosis of HCC cells, which may be attributed to the AMPK-mediated p53/p21 and p38 MAPK cascades. It suggests that adenine may be a potential adjuvant for the treatment of HCC in combination with cisplatin.

5.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35455434

RESUMEN

Rosmarinic acid (RA) is a phenolic compound that has several bioactivities, such as anti-inflammatory and antioxidant activities. Here, we further investigate the anti-inflammatory effect of RA on rat A7r5 aortic smooth muscle cells with exposure to lipopolysaccharide (LPS). Our findings showed that low-dose RA (10-25 µM) did not influence the cell viability and morphology of A7r5 cells and significantly inhibited LPS-induced mRNA expression of the pro-inflammatory mediators TNFα, IL-8, and inducible NO synthase (iNOS). Consistently, RA reduced the production of TNFα, IL-8, and NO by A7r5 cells with exposure to LPS. Signaling cascade analysis showed that LPS induced activation of Erk, JNK, p38 mitogen-activated protein kinase (MAPK), and NF-κB, and RA treatments attenuated the activation of the three MAPKs and NF-κB. Moreover, cotreatment with RA and Erk, JNK, p38 MAPK, or NF-κB inhibitors further downregulated the mRNA expression of TNFα, IL-8, and iNOS, and decreased the production of TNFα, IL-8, and NO by A7r5 cells. Taken together, these findings indicate that RA may ameliorate the LPS-provoked inflammatory response of vascular smooth muscle cells by inhibition of MAPK/NF-κB signaling.

6.
Life (Basel) ; 11(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947939

RESUMEN

Ischemia followed by blood supply reperfusion in cardiomyocytes leads to an overproduction of free radicals and a rapid decrease of adenosine triphosphate concentration. The cardioprotective effect of a potential drug, adenine, was evaluated using H9c2 rat cardiomyoblasts. After hypoxia-reoxygenation (HR) treatment consisting of hypoxia for 21 h followed by reoxygenation for 6 h, it was revealed that pretreatment with 200 µM adenine for 2 h effectively prevented HR-induced cell death. Adenine also significantly decreased the production of reactive oxygen species and reduced cell apoptosis after HR injury. The antioxidant effect of adenine was also revealed in this study. Adenine pretreatment significantly reduced the expression of activating transcription factor 4 (ATF4) and glucose-regulated protein 78 (GRP78) proteins, and protein disulfide isomerase induced a protective effect on mitochondria after HR stimulation. Intracellular adenosine monophosphate-activated protein kinase, peroxisome proliferator-activated receptor delta (PPARδ), and perilipin levels were increased by adenine after HR stimulation. Adenine had a protective effect in HR-damaged H9c2 cells. It may be used in multiple preventive medicines in the future.

7.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34577560

RESUMEN

Tumor metastasis is a major cause of death of patients with colorectal cancer (CRC). Our previous findings show that adenine has antiproliferation activity against tumor cells. However, whether adenine reduces the invasiveness of DLD-1 and SW480 CRC cells has not been thoroughly explored. In this study, we aimed to explore the effects of adenine on the invasion potential of DLD-1 cells. Our findings showed that adenine at concentrations of ≤200 µM did not influence the cell viability of DLD-1 and SW480 CRC cells. By contrast, adenine reduced the migratory potential of the CRC cells. Moreover, it decreased the invasion capacity of the CRC cells in a dose-dependent manner. We further observed that adenine downregulated the protein levels of tissue plasminogen activator, matrix metalloproteinase-9, Snail, TWIST, and vimentin, but upregulated the tissue inhibitor of metalloproteinase-1 expression in DLD-1 cells. Adenine decreased the integrin αV level and reduced the activation of integrin-associated signaling components, including focal adhesion kinase (FAK), paxillin, and Src in DLD-1 cells. Further observations showed that adenine induced AMP-activated protein kinase (AMPK) activation and inhibited mTOR phosphorylation in DLD-1 cells. The knockdown of AMPK restored the reduced integrin αV level and FAK/paxillin/Src signaling inhibited by adenine in DLD-1 cells. Collectively, these findings reveal that adenine reduces the invasion potential of DLD-1 cells through the AMPK/integrin/FAK axis, suggesting that adenine may have anti-metastatic potential in CRC cells.

8.
Front Aging Neurosci ; 13: 721428, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557086

RESUMEN

Stroke is one of the leading causes of death and disability worldwide. Brain injury after ischemic stroke involves multiple pathophysiological mechanisms, such as oxidative stress, mitochondrial dysfunction, excitotoxicity, calcium overload, neuroinflammation, neuronal apoptosis, and blood-brain barrier (BBB) disruption. All of these factors are associated with dysfunctional energy metabolism after stroke. Mitochondria are organelles that provide adenosine triphosphate (ATP) to the cell through oxidative phosphorylation. Mitochondrial dynamics means that the mitochondria are constantly changing and that they maintain the normal physiological functions of the cell through continuous division and fusion. Mitochondrial dynamics are closely associated with various pathophysiological mechanisms of post-stroke brain injury. In this review, we will discuss the role of the molecular mechanisms of mitochondrial dynamics in energy metabolism after ischemic stroke, as well as new strategies to restore energy homeostasis and neural function. Through this, we hope to uncover new therapeutic targets for the treatment of ischemic stroke.

9.
Front Cell Neurosci ; 15: 646921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34234646

RESUMEN

Stroke is a neurological disease responsible for significant morbidity and disability worldwide. However, there remains a dearth of effective therapies. The failure of many therapies for stroke in clinical trials has promoted the development of human cell-based models, such as brain organoids. Brain organoids differ from pluripotent stem cells in that they recapitulate various key features of the human central nervous system (CNS) in three-dimensional (3D) space. Recent studies have demonstrated that brain organoids could serve as a new platform to study various neurological diseases. However, there are several limitations, such as the scarcity of glia and vasculature in organoids, which are important for studying stroke. Herein, we have summarized the application of brain organoid technology in stroke research, such as for modeling and transplantation purposes. We also discuss methods to overcome the limitations of brain organoid technology, as well as future prospects for its application in stroke research. Although there are many difficulties and challenges associated with brain organoid technology, it is clear that this approach will play a critical role in the future exploration of stroke treatment.

10.
Exp Neurol ; 341: 113712, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33819449

RESUMEN

Acute brain injury (ABI) is a broad concept mainly comprised of sudden parenchymal brain injury. Acute brain injury outcomes are dependent not only on the severity of the primary injury, but the delayed secondary injury that subsequently follows as well. These are both taken into consideration when determining the patient's prognosis. Growing clinical and experimental evidence demonstrates that "preconditioning," a prophylactic approach in which the brain is exposed to various pre-injury stressors, can induce varying degrees of "tolerance" against the impact of the ABI by modulating neuroinflammation. In this review, we will summarize the pathophysiology of ABI, and discuss the involved mechanisms of neuroinflammation in ABI, as well as existing experimental and clinical studies demonstrating the efficacy of preconditioning methods in various types of ABI by modulating neuroinflammation.


Asunto(s)
Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/prevención & control , Encéfalo/metabolismo , Inmunomodulación/fisiología , Precondicionamiento Isquémico/métodos , Anestésicos/administración & dosificación , Animales , Encéfalo/inmunología , Lesiones Encefálicas/inmunología , Ejercicio Físico/fisiología , Humanos , Inmunomodulación/efectos de los fármacos
11.
Oxid Med Cell Longev ; 2021: 8857486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815664

RESUMEN

Stroke has a high rate of morbidity and disability, which seriously endangers human health. In stroke, oxidative stress leads to further damage to the brain tissue. Therefore, treatment for oxidative stress is urgently needed. However, antioxidative drugs have demonstrated obvious protective effects in preclinical studies, but the clinical studies have not seen breakthroughs. Nanomaterials, with their characteristically small size, can be used to deliver drugs and have demonstrated excellent performance in treating various diseases. Additionally, some nanomaterials have shown potential in scavenging reactive oxygen species (ROS) in stroke according to the nature of nanomaterials. The drugs' delivery ability of nanomaterials has great significance for the clinical translation and application of antioxidants. It increases drug blood concentration and half-life and targets the ischemic brain to protect cells from oxidative stress-induced death. This review summarizes the characteristics and progress of nanomaterials in the application of antioxidant therapy in stroke, including ischemic stroke, hemorrhagic stroke, and neural regeneration. We also discuss the prospect of nanomaterials for the treatment of oxidative stress in stroke and the challenges in their application, such as the toxicity and the off-target effects of nanomaterials.


Asunto(s)
Nanoestructuras/uso terapéutico , Estrés Oxidativo , Accidente Cerebrovascular/terapia , Animales , Antioxidantes/metabolismo , Humanos , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
12.
Front Oncol ; 11: 621154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718179

RESUMEN

High levels of microvessel density (MVD) indicate poor prognosis in patients with malignant glioma. Leucine-rich repeats and immunoglobulin-like domains (LRIG) 3, a potential tumor suppressor, plays an important role in tumor progression and may serve as a biomarker in many human cancers. However, its role and underlying mechanism of action in glioma angiogenesis remain unclear. In the present study, we used loss- and gain-of-function assays to show that LRIG3 significantly suppressed glioma-induced angiogenesis, both in vitro and in vivo. Mechanistically, LRIG3 inhibited activation of the PI3K/AKT signaling pathway, downregulating vascular endothelial growth factor A (VEGFA) in glioma cells, thereby inhibiting angiogenesis. Notably, LRIG3 had a significant negative correlation with VEGFA expression in glioma tissues. Taken together, our results suggest that LRIG3 is a novel regulator of glioma angiogenesis and may be a promising option for developing anti-angiogenic therapy.

13.
FASEB J ; 35(3): e21296, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33675115

RESUMEN

Adenine phosphoribosyltransferase (APRT) is the key enzyme involved in purine salvage by the incorporation of adenine and phosphoribosyl pyrophosphate to provide adenylate nucleotides. To evaluate the role of APRT in the repair processes of cutaneous wounds in healthy skin and in diabetic patients, a diabetic mouse model (db/db) and age-matched wild-type mice were used. Moreover, the topical application of adenine was assessed. In vitro studies, analytical, histological, and immunohistochemical methods were used. Diabetic mice treated with adenine exhibited elevated ATP levels in organismic skin and accelerated wound healing. In vitro studies showed that APRT utilized adenine to rescue cellular ATP levels and proliferation from hydrogen peroxide-induced oxidative damage. HPLC-ESI-MS/MS-based analysis of total adenylate nucleotides in NIH-3T3 fibroblasts demonstrated that adenine addition enlarged the cellular adenylate pool, reduced the adenylate energy charge, and provided additional AMP for the further generation of ATP. These data indicate an upregulation of APRT in skin wounds, highlighting its role during the healing of diabetic wounds through regulation of the nucleotide pool after injury. Furthermore, topical adenine supplementation resulted in an enlargement of the adenylate pool needed for the generation of ATP, an important molecule for wound repair.


Asunto(s)
Adenina Fosforribosiltransferasa/fisiología , Diabetes Mellitus Experimental/fisiopatología , Cicatrización de Heridas/fisiología , Adenina/farmacología , Adenosina Trifosfato/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Cicatrización de Heridas/efectos de los fármacos
14.
Front Cell Neurosci ; 15: 637210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732111

RESUMEN

Strokes are the most common types of cerebrovascular disease and remain a major cause of death and disability worldwide. Cerebral ischemic stroke is caused by a reduction in blood flow to the brain. In this disease, two major zones of injury are identified: the lesion core, in which cells rapidly progress toward death, and the ischemic penumbra (surrounding the lesion core), which is defined as hypoperfusion tissue where cells may remain viable and can be repaired. Two methods that are approved by the Food and Drug Administration (FDA) include intravenous thrombolytic therapy and endovascular thrombectomy, however, the narrow therapeutic window poses a limitation, and therefore a low percentage of stroke patients actually receive these treatments. Developments in stem cell therapy have introduced renewed hope to patients with ischemic stroke due to its potential effect for reversing the neurological sequelae. Over the last few decades, animal tests and clinical trials have been used to treat ischemic stroke experimentally with various types of stem cells. However, several technical and ethical challenges must be overcome before stem cells can become a choice for the treatment of stroke. In this review, we summarize the mechanisms, processes, and challenges of using stem cells in stroke treatment. We also discuss new developing trends in this field.

15.
Int J Urol ; 28(2): 196-201, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33230942

RESUMEN

OBJECTIVES: To compare suprapubic-assisted laparoendoscopic single-site surgery nephrectomy with standard laparoscopic nephrectomy. METHODS: A retrospective case-control study comparing three surgeons' experience with 122 suprapubic-assisted laparoendoscopic single-site surgery nephrectomy and 107 standard laparoscopic nephrectomy was carried out. Operative time, estimated blood loss, intraoperative complications, intraoperative conversion, postoperative bowel recovery, postoperative analgesics, postoperative visual analog pain scale score, postoperative length of stay, days before going back to work, postoperative complications and Patient Scar Assessment Questionnaire were compared after propensity score matching. RESULTS: A total of 97 matched pairs were obtained after propensity score matching. There were no statistically significant differences between the suprapubic-assisted laparoendoscopic single-site surgery nephrectomy and standard laparoscopic nephrectomy groups with respect to operative time, estimated blood loss, intraoperative complications, intraoperative conversion, postoperative bowel recovery, length of stay and postoperative complications. Suprapubic-assisted laparoendoscopic single-site surgery nephrectomy group had decreased postoperative analgesics (20.9 vs 23.5, P = 0.04), visual analog pain scale score at 24 h (4.28 vs 5.28, P = 0.000), visual analog pain scale score at discharge (1.01 vs 1.47, P = 0.000), days before going back to work (28.4 vs 31.9, P = 0.000) and Patient Scar Assessment Questionnaire score (34.0 vs 42.0, P = 0.000), compared with the standard laparoscopic nephrectomy group. CONCLUSIONS: Suprapubic-assisted laparoendoscopic single-site surgery nephrectomy and standard laparoscopic nephrectomy are equivalent in terms of the safety and efficacy. However, suprapubic-assisted laparoendoscopic single-site surgery nephrectomy confers less postoperative pain, fewer days before going back to work and better cosmetic result when compared with standard laparoscopic nephrectomy.


Asunto(s)
Laparoscopía , Estudios de Casos y Controles , Humanos , Laparoscopía/efectos adversos , Tiempo de Internación , Nefrectomía/efectos adversos , Puntaje de Propensión , Estándares de Referencia , Estudios Retrospectivos , Resultado del Tratamiento
16.
Front Nutr ; 7: 584900, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195374

RESUMEN

Finger citron (Citrus medica L. var. sarcodactylis Swingle) is a traditional Chinese herb and considered as a healthy food. Flavonoids are the major bioactive substances in Finger citron. In this study, the major flavonoids of finger citron (FFC) were purified with AB-8 macroporous resins, and then three of them were identified as diosmetin-6-8-di-C-glucoside, hesperidin and diosmetin-6-C-glucoside, and other two were preliminarily inferred as limocitrol 3-alpha-l-arabinopyranosyl-(1->3)-galactoside and scutellarein 4'-methyl ether 7-glucoside by high-performance liquid chromatography and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry. Further, their antioxidation and antiaging activities were determined in vitro and in vivo. In vitro, chemical assays revealed that the purified FFC had strong antioxidative activity as demonstrated by its strong DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2-azinobis (3-ethyl-benzothiazoline-6-sulphonic acid) diammonium salt] radical scavenging activities and ORAC (oxygen radical absorbance capacity). In vivo, the purified FFC significantly increased the mean and maximum lifespan of Caenorhabditis elegans by 31.26 and 26.59%, respectively, and showed no side effects on their physiological functions. Under normal and oxidative stress conditions, purified FFC reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde, while increased superoxide dismutase (SOD) and catalase (CAT) enzyme activities in C. elegans. Together, we successfully identified three major substances in purified FFC of finger citron and determined the excellent antiaging activity of FFC, which is attributed to its strong antioxidative activity and effect on homeostasis of ROS.

17.
Front Cell Neurosci ; 14: 590789, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100976

RESUMEN

Traumatic brain injury (TBI) is a structural and physiological disruption of brain function caused by external forces. It is a major cause of death and disability for patients worldwide. TBI includes both primary and secondary impairments. Iron overload and ferroptosis highly involved in the pathophysiological process of secondary brain injury. Ferroptosis is a form of regulatory cell death, as increased iron accumulation in the brain leads to lipid peroxidation, reactive oxygen species (ROS) production, mitochondrial dysfunction and neuroinflammatory responses, resulting in cellular and neuronal damage. For this reason, eliminating factors like iron deposition and inhibiting lipid peroxidation may be a promising therapy. Iron chelators can be used to eliminate excess iron and to alleviate some of the clinical manifestations of TBI. In this review we will focus on the mechanisms of iron and ferroptosis involving the manifestations of TBI, broaden our understanding of the use of iron chelators for TBI. Through this review, we were able to better find novel clinical therapeutic directions for further TBI study.

18.
Int J Med Sci ; 17(5): 678-684, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32210718

RESUMEN

Background: Adenine exhibits potential anticancer activity against several types of malignancies. However, whether adenine has anticancer effects on hepatocellular carcinoma (HCC) cells is incompletely explored. Methods: Human HCC cell lines HepG2 and SK-Hep-1 (p53-wild type) and Hep3B (p53-deficient) were used as cell model. Cell growth and cell cycle distribution were determined using MTT assay and flow cytometric analysis, respectively. Protein expression and phosphorylation were assessed by Western blot. Involvement of AMP-activated protein kinase (AMPK) was evaluated using specific inhibitor and small inhibitory RNA (siRNA). Results: Adenine treatments (0.5 - 2 mM) clearly decreased the cell growth of Hep G2 and SK-Hep-1 cells to 72.5 ± 3.4% and 71.3 ± 4.6% of control, respectively. In parallel, adenine also induced sub-G1 and S phase accumulation in both HCC cells. However, adenine did not affect the cell growth and cell cycle distribution of Hep3B cell. Western blot analysis showed that adenine reduced expression of cyclin A/D1 and cyclin-dependent kinase (CDK)2 and upregulated p53, p21, Bax, PUMA, and NOXA in HepG2 cell. Moreover, adenine induced AMPK activation that was involved in the p53-associated apoptotic cascade in HepG2 cells. Inhibition of AMPK activation or knockdown of AMPK restored the decreased cell growth of HepG2 and SK-Hep-1 cells in response to adenine. Conclusions: These findings reveal that adenine reduces the cell growth of HepG2 and SK-Hep-1 but not Hep3B cells, attributing to the AMPK/p53-mediated S phase arrest and apoptosis. It suggests that adenine has anticancer potential against p53-wild type HCC cells and may be beneficial as an adjuvant for HCC treatment.


Asunto(s)
Adenina/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas Quinasas Activadas por AMP/metabolismo , Adenina/uso terapéutico , Apoptosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Células Hep G2 , Humanos
19.
Food Sci Nutr ; 8(3): 1636-1648, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32180971

RESUMEN

The development of antiaging functional products is a hot topic in the field of functional foods. However, the efficient extraction of functional ingredients is the limiting step for the functional food industry. Continuous phase-transition extraction (CPE) is a new extraction technique that combines the advantages of Soxhlet extraction and supercritical extraction, which may have a distinct advantage over traditional methods in the extraction of flavonoids. In our study, the Box-Behnken design combined with response surface methodology was used to optimize CPE of crude flavonoids from finger citron fruit. The antiaging activities of finger citron crude flavonoids (FCCF) were evaluated by Caenorhabditis elegans (C. elegans) model. The optimal extraction conditions for CPE were as follows: ethanol concentration 85%, temperature 90°C, time 120 min, and pressure 0.2 MPa. Compared with the heat reflux extraction, the extraction rate and content of FCCF extracted by CPE increased by 24.28% and 33.22% (p < .05), respectively. FCCF extended the lifespan of C. elegans by 14.94% without causing adverse effects on their reproduction and locomotion ability. A further analysis suggested that FCCF prolonged the lifespan of nematodes under normal and oxidative stress by increasing the activity of major enzymes in endogenous antioxidant defense system and reducing the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). The results confirmed the effectiveness of CPE in extracting crude flavonoids from finger citron fruit, and the extracted FCCF exhibited strong antiaging activities.

20.
Biosci Biotechnol Biochem ; 83(12): 2220-2229, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31392929

RESUMEN

Pathogenic bacteria induced sepsis is a risk factor for hospital mortality. Monocyte-derived inflammatory cytokines participate in the sepsis progression. The anti-inflammatory effect of adenine has been previously reported by our laboratory and others. However, the mechanism of action has different opinions and remains unclear in monocyte. Here, adenine was found to significantly inhibit the secretion of lipopolysaccharide-induced inflammatory cytokines such as TNF-α, IL-1ß and IL-6 in THP-1 cells. The bioinformatic analysis results showed that the anti-inflammatory function is possibly due to the inhibition of NF-κB signaling. And this result is confirmed by using immunocytochemistry. Moreover, this effect can be suppressed by the AMPK inhibitor. Results also showed that adenine can activate AMPK and its multiple downstream targets. Data from mass spectrometry showed that adenine promotes significant elevation of intracellular AMP. Our data indicate that the anti-inflammatory mechanism of adenine may involve adenine phosphoribosyltransferase-catalyzed intracellular AMP elevation, which stimulates AMPK activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenina/farmacología , Antiinflamatorios/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Activación Enzimática , Humanos , Inflamación/inducido químicamente , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Transducción de Señal , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...